
HybridCuts: A Scheme Combining Decomposition and Cutting for
Packet Classification

Wenjun Li (liwenjun@sz.pku.edu.cn), Xianfeng Li (lixianfeng@pkusz.edu.cn)

Engineering Lab on Intelligent Perception for Internet of Things (ELIP)
Peking University, Shenzhen Graduate School, Shenzhen, China

Abstract—Packet classification is an enabling function for a
variety of Internet applications such as access control, quality
of service and differentiated services. Decision-tree and
decomposition are the most well-known algorithmic
approaches. Compared to architectural solutions, both
approaches are memory and performance inefficient, falling
short of the needs of high-speed networks. EffiCuts, the state-
of-the-art decision-tree technique, significantly reduces
memory overhead of classic cutting algorithms with separated
trees and equi-dense cuts. However, it suffers from too many
memory accesses and a large number of separated trees.
Besides, EffiCuts needs comparator circuitry to support equi-
dense cuts, which makes it less practical. Decomposition based
schemes, such as BV, can leverage the parallelism offered by
modern hardware for memory accesses, but they have poor
storage scalability. In this paper, we propose HybridCuts, a
combination of decomposition and decision-tree techniques
that improves storage and performance simultaneously. The
decomposition part of HybridCuts has the benefits of
traditional decomposition-based techniques without the
trouble of aggregating results from a large number of bit
vectors or a set of big lookup tables. Meanwhile, thanks to the
clever partitioning of the rule set, an efficient cutting algorithm
following the decomposition can build short decision trees with
significant reduction on rule replications. Using ClassBench,
we show that HybridCuts achieves similar memory reduction
compared to EffiCuts, but it outperforms EffiCuts significantly
in terms of memory accesses for packet classification. In
addition, HybridCuts is more practical for implementation
than EffiCuts, which maintains complicated data structures
and requires special hardware support for efficient cuts.

Keywords-Packet Classification; Decomposition; Decision-
Tree; Rule Replication; Performance

I. INTRODUCTION
Modern Internet routers provide services beyond basic

packet forwarding, such as access control, quality of service,
and differentiated services. All such functionalities require
packet classification, which decides the action to be taken on
a packet based on multiple fields in the packet header. A
predefined classifier consisting of a set of rules is looked up
for a match for these purposes. To match a rule, packet
classification needs to compare multiple header values of the
incoming packet against the field values of all the rules in the
classifier to determine the type of actions (e.g., drop or
permit) to be taken on the packet.

Numerous packet classification techniques have been
proposed in the past fifteen years [1]. They can be
categorized broadly into two major approaches: architectural

and algorithmic. Ternary Content Addressable Memories
(TCAMs) based techniques are the representative
architectural approaches [2-6]. TCAMs are widely used
because of their ability to process packets at line speed. But
TCAMs are expensive, and suffer from scalability and high
power consumption [7]. To address the high power
consumption problem, recent TCAM related research efforts
try to make tradeoffs between power consumption and
lookup performance with multiple accesses to a set of
TCAM subarrays, such as the TreeCAM [8]. Another issue
with TCAMs is the rule duplication problem related to the
port number fields when transforming a single range into an
equivalent set of multiple prefixes for the convenience of
TCAM operations [9]. As a result, efficient algorithmic
solutions using ordinary memories such as DRAM/SRAM
are still under active investigation.

Decision-tree and decomposition are the most well-
known algorithmic approaches. Decision-tree based
schemes, such as HiCuts [10] and HyperCuts [11], separate
the search space into many equal-sized sub-spaces using
local optimizations. But both schemes have the same rule
replication problem, which might cause large memory
overhead. Although EffiCuts [12], the state-of-the-art
decision-tree technique, can avoid large memory overhead
with Separable trees and Equi-dense cuts, it suffers from
several problems: 1) too many memory accesses, which
worsen the low-speed problem of algorithmic techniques; 2)
a large and variable number of separated trees, which raises
its barrier for practical implementation; 3) and the needs of
specialized comparator circuitry to support equi-dense cuts,
which further limits its adoption in practice. Decomposition
based schemes, such as BV [13], can leverage the parallelism
offered by modern hardware to improve performance, but
they have poor storage scalability. Therefore, these
algorithmic approaches are memory and performance
inefficient, falling short of the needs of high-speed networks.
Thus, it is worth investigating new algorithms with higher
performance and better scalability.

In this paper, we propose HybridCuts, a combination of
decomposition and decision-tree techniques that improves
storage and performance simultaneously. The decomposition
part of HybridCuts has the benefits of traditional
decomposition-based techniques, but without the trouble of
aggregating results from a large number of bit vectors or a
set of big lookup tables. Meanwhile, thanks to the clever
partitioning of the rule set, an efficient cutting algorithm
following the decomposition is employed to build short
decision trees with significant reduction on rule replications.
The main contributions of this paper include:

2013 IEEE 21st Annual Symposium on High-Performance Interconnects

978-0-7695-5103-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HOTI.2013.12

41

� A rule set decomposition algorithm based on the
observation that most rules have at least one small
field. The proposed decomposition has the benefits of
traditional decomposition-based techniques, but
without the trouble of expensive aggregations.

� A novel one-dimensional cutting algorithm called
FiCuts, which has a global view on the characteristics
of the subset of rules, and therefore is simpler and
works more intelligently than HiCuts.

� A two-stage cutting framework which combines one-
dimensional cutting and multi-dimensional cutting
techniques, and is adaptive at building short decision
trees with significant reduction on rule replications.

We evaluate our algorithm using ClassBench [14] and
show that HybridCuts is able to produce a very small
number of short decision trees with low memory overhead.
Even for rule sets up to 100K entries, the constructed data
structure can be accommodated in on-chip memory. In
addition, it is quite feasible that a carefully pipelined and
parallelized hardware implementation of HybridCuts will
achieve a line-speed performance.

The rest of the paper is organized as follows. Section II
introduces the background. Section III briefly summarizes
the related work. Section IV presents the technical details of
HybridCuts. Section V provides experimental results. Finally,
Section VI concludes the paper.

II. BACKGROUND

A. The Packet Classification Problem
The purpose of packet classification is to find a matching

rule from a packet classifier for a packet. A packet classifier
is a set of rules, with each rule R consisting of a tuple of F
field values (exact value, prefix or range) and an action to be
taken in case of a match. In today’s classifiers, a typical rule
is a 5-tuple: the source and destination IP addresses (i.e., SA,
DA), the source and destination ports (i.e., SP, DP), and the
protocol number (i.e., Prot). The rules are often prioritized to
resolve potential multiple match scenarios.

B. Complexity in Theory
There are several standard problems in the field of

computational geometry that resemble packet classification.
From a geometric point of view, each rule R represents a
hyper-rectangle and an incoming packet p represents a point
in F-dimensional space. If a packet p matches a particular
rule R, then the point represented by p falls into the hyper-
rectangle specified by R. Therefore, packet classification
can be treated as a point location problem in computational
geometry. According to [15], for N non-overlapping hyper-
rectangles in F-dimensional space, the best bounds for
locating a point are either �(log N) time with �(NF) space,
or �(logF-1 N) time with �(N) space. Therefore, the
mathematic complexity of packet classification is extremely
high as the number of rules or dimensions increase. Clearly,
this is impractical: with just 1000 rules and 4 fields, a
solution is either impracticably (NF is about 1000G) or too
slow (logF-1 N is about 1000 memory accesses).

C. Complexity in Practice
As the above example illustrates, it is infeasible to design

a single algorithm that can perform well in all cases.
Fortunately, packet classification rules in real-life
applications have some inherent characteristics that can be
exploited to reduce the complexity [11, 16-22]. The
following is a distillation of previous observations relevant
to our work:

� The protocol field is restricted to a small set of values,
e.g., TCP, UDP, and the wildcard.

� Rules specify a limited number of distinct transport
port ranges.

� The number of address prefixes matching a given
address is typically five or less.

� The number of rules matching a given packet is
typically five or less.

� Many different rules share the same field values.

III. RELATED WORK
A lot of algorithmic approaches have been proposed for

packet classification in the past fifteen years. They can be
categorized into two major groups: decomposition based [9,
13, 18, 19] and decision-tree based [9-12, 16, 19-22]
algorithms. In decomposition based schemes, independent
search on each header field is performed for the whole rule
set, and then the results are integrated to get the matching
rule. These approaches offer high throughput but require a
large amount of storage in order to aggregate the results
from individual search operations efficiently. In decision-
tree based schemes, the geometric view of the packet
classification problem is taken and a decision tree is built.
They work by recursively cutting the search space into
smaller subspaces. This is repeated until a predefined
number of rules are contained by each subspace. When a
packet arrives, the decision tree is traversed to find a
matching rule at a leaf node. Next, we give a more detailed
review on a few representative techniques.

A. Parallel Bit-Vectors (BV)
Parallel Bit-Vectors scheme [13] is one of the most

representative decomposition based solutions. It works on
the individual fields of rules independently for partially
matching results, which are encoded as bit vectors. Each bit
in a bit vector stands for a partial matching result to a single
rule. Then a bit-wise AND operation on all bit vectors is
performed to get the final result. The most significant “1”
bit in the final bit vector denotes a matched rule with the
highest priority. Parallel BV approach has �(log N) search
time and a rather unfavorable �(N2) memory requirement.
Aggregate Bit-Vector(ABV) [18] can be viewed as an
improved version of BV, which seeks to improve the
performance of BV based on the fact that real filter sets
often result in sparse vectors containing a large portion of
“0”s inside. ABV makes use of this phenomenon by
compressing the bit vectors into several chunks containing
“1” bits. Although ABV can improve performance to some
extent, the unfavorable memory problem still exists.

42

B. HiCuts and HyperCuts
HiCuts [10] and HyperCuts [11] take a geometric view of

the packet classification problem. Each rule is viewed as a
hypercube in an F-dimensional space, where F is the
number of fields in a rule. Each packet defines a point in
this F-dimensional space. HiCuts cuts the search space into
many equal-sized subspaces recursively until the rules
covered by each subspace is less than the pre-defined bucket
size called binth. This cutting process is carried out using a
tree data structure, which is called a decision-tree. The root
node of the tree covers the whole searching space which
contains all rules. HiCuts selects one dimension to cut and
decides how many subspaces should be cut using a space
optimization function with a parameter called spfac. In case
a rule spans multiple subspaces, rule replication happens,
which is an undesirable case. Upon the construction of the
decision tree, an incoming packet searches along the tree
using its field values until a leaf node is hit, then a linear
search is taken to get a best matched rule, if any, among the
ones in the leaf node. HyperCuts is an improved version of
HiCuts, which is more flexible in that it allows cutting on
multiple fields per step, resulting in a fatter and shorter
decision tree. Both HiCuts and HyperCuts have the same
rule replication problem, leading to significant memory
overhead, especially for large rule tables.

C. EffiCuts
EffiCuts [12], a state-of-the-art decision-tree technique,

identifies two primary causes for large memory overhead:
big rules suffer a lot of replications, and equi-sized cuts
create many ineffective nodes. Based on these observations,
EffiCuts proposes two techniques to reduce memory
overhead. One is that EffiCuts uses a partition method to
separate rule set into several subsets, depending on whether
the value of each dimension is wildcard (or almost wildcard)
and each subset creates its own decision-tree independently
using HyperCuts. The other one is equi-dense cuts instead
of equi-size cuts, which tries to combine similar nodes into
one. Although EffiCuts reduces memory overhead
dramatically, Efficuts suffers from too many memory
accesses and a large number of separated trees (31 in the
worst-case, and 12 on average). Efficuts alleviates this
problem with selective tree merging. However, the merging
is restricted to pairs of trees meeting special conditions.
Otherwise, it will destroy separability and result in
significant rule replications with arbitrary tree-merging. In
our experiments, we observe that the selective tree merging
results in 8 trees on average.

D. ParaSplit
ParaSplit [19] is another recent work that is decision-tree

based and makes use of rule set partitioning to significantly
reduce rule replications. It is different from EffiCuts in that
its objective is for efficient hardware implementation using
FPGAs. It employs a complex heuristic for rule set
partitioning, which may require 5000 to 10000 iterations to
reach an optimal partitioning. For hardware acceleration, it
applies parallelism and pipelining in conjunction: the
multiple trees are searched in parallel, and the search on

individual trees is pipelined. Although HybridCuts proposed
in this work is an algorithmic solution, it is perfectly
suitable for similar hardware accelerations.

IV. HYBRIDCUTS
As the authors of EffiCuts observed, the overlapping of

rules in a classifier varies vastly in size, causing extensive
replications of large rules during the algorithms’ fine cuts
for separating the small rules. An effective solution to
address this problem is to decompose the original set into
several subsets for cutting-based algorithms. But EffiCuts
applies this principle aggressively, leading to an
uncontrolled large number of trees. In this paper, we
propose a new decomposition algorithm to separate rules
into a few subsets, and then we introduce a set of efficient
cutting algorithms on the individual subsets.

A. Decomposition-based Framework
EffiCuts produces up to 31 decision trees with a partition

method that takes the properties of rules on all five
dimensions into consideration. Unlike EffiCuts, we
decompose rules based on their characteristics shared in a
single dimension. This decomposition produces only 6
subsets for a typical 5-tuple rule set. In fact, since we do not
consider protocol dimension, just 5 subsets will be
generated in our baseline algorithm, and this number is
further reduced to 3 with an optimization.

The rationale behind this strategy of decomposition is
simple: by grouping rules that are small in the same field,
we get a dimension in the space where the extensive
replications bothering traditional cutting-based algorithms
by wide overlaps are significantly reduced. In addition,
subsets decomposed this way enable a simple and space-
efficient one-dimensional cutting algorithm.

Definitions. To proceed to more detailed discussion, we
first introduce some definitions and observations used by
HybridCuts. Given an N-dimensional rule R = (F1, F2, F3

...
FN), Leni represents the length of field Fi, and a threshold
value vector T = (T1, T2, T3

... TN). We call Fi is a small field
if Leni � Ti, or a big field if Leni > Ti. Then, we define the
following concepts for R:

Big rule: ∀i ∈{1, 2, 3 ... N}, Fi in R is a big field;
Small rule: ∃i ∈{1, 2, 3 ... N}, Fi in R is a small field;

TABLE I. PERCENTAGE OF BIG RULES

Big rules% T’(16,16,8,8) T’(12,12,6,6) T’(8,8,4,4)

ACL_1K
ACL_10K
ACL_100K

0.55%
0.22%
0.00%

0.55%
0.22%
0.00%

3.93%
3.11%
0.00%

FW_1K
FW_10K
FW_100K

1.14%
0.79%
1.28%

1.52%
1.13%
1.70%

3.29%
3.87%
4.71%

IPC_1K
IPC_10K
IPC_100K

0.21%
0.04%
0.48%

0.96%
0.94%
1.86%

4.85%
3.75%
9.84%

43

For a typical 5-tuple rule, since the protocol field is
restricted to a small set of values (tcp, udp, *, etc), we just
consider the other four fields. Then the threshold value
vector T for 5-tuple rules is simplified to a four-dimensional
vector and a rule R(SA, DA, SP, DP, Prot) is called a small
rule if there exists at least one small field in {SA, DA, SP,
DP}. For the sake of convenience in writing, we use a
logarithmic vector T’ to represent the threshold value vector
T. For example, if we set threshold value vector T = (216, 216,
28, 28), then index logarithmic T’ = (16, 16, 8, 8).

Table I shows the percentage of big rules under three
different thresholds for a number of rule sets from
ClassBench. It is clear that the percentage of big rules is
very low even under very demanding thresholds. This
indicates that the vast majority of the rules have at least one
small field satisfying a threshold T as narrow as Table I
gives.

Field-wise decomposition. Based on above definitions
and observations, we decompose a 5-tuple rule set into the
following five subsets without duplicates among each other.

1) Big-subset: SA, DA, SP and DP are all big field;
2) SA-subset: SA is a small field for each rule;
3) DA-subset: DA is a small field for each rule;
4) SP-subset: SP is a small field for each rule;
5) DP-subset: DP is a small field for each rule.

Many rules may have multiple small fields, and there
exists options on deciding where to go for a rule with
multiple small fields. A simple metric for decision is the
balance on the sizes of the subsets. For example, when
processing a rule R with two small fields: SA and DA,
suppose the sizes of the SA-subset and the DA-subset up to
now are N1 and N2 respectively, then rule R will go to SA-
subset if N1� N2, or to DA-subset vice versa. There exist
several other guidelines for decomposition, which will not
be discussed here for the limitation of space.

Post-decomposition. The proposed decomposition is
somewhat like the first step of a traditional decomposition
based approach, where rules are projected into a specific
field for a field-wise matching. However, the decomposition
here is quite different from traditional schemes in two
aspects. First, rules are partitioned into multiple subsets,
instead of all being projected onto each field. Second, the
partitioned subset will undergo a cutting process to find a
single match, instead of finding multiple rules (often
encoded in a long bit vector) matching the incoming packet
on the projected field. Figure 1 and Figure 2 highlights their
differences clearly.

From Figure 1 and Figure 2, it can be seen that the
proposed decomposition scheme can leverage the benefits of
traditional decomposition-based techniques without the
time- and space- inefficient aggregation step. In more details,
instead of searching in each dimension for the whole rule set,
we first partition the rule set into several subsets using the
algorithm described above. For each subset, we build a
decision-tree with a hybrid of cutting algorithms efficient at
different tree-construction stages. Then matching operations
can be performed on these decision trees in parallel. Finally,
instead of aggregating multiple bit vectors to get the final
matching in traditional decomposition based techniques, we
just need to perform a simple priority-based selection
among the outcomes from the individual search processes.

B. FiCuts: A One-Dimensional Cutting Technique
After presenting the decomposition-based framework, we

elaborate on the decision-tree construction process
embedded in the middle part of Figure 2. First, we introduce
a simple but effective one-dimensional cutting algorithm
called Fixed intelligent Cuttings (FiCuts), which will be
applied in the first stage of decision-tree construction.
FiCuts derives from HiCuts, but with a better global view
on the characteristics of the rule set. We use a small
example of two-dimensional rule set shown in Figure 3 for
subsequent discussion.

HiCuts is an ‘Intelligent’ cutting algorithm since it can
choose the cutting dimension and decide the number of cuts
with local heuristics at each tree node. However,
constrained by the lack of a global view on the properties of
a rule set, HiCuts does not always make intelligent cutting
decisions. Take the rules shown in Figure 4 for example (a
subset of ‘vertical’ rules in Figure 3), if we use the

Figure 3. An example rule set

Figure 1. Traditional Decomposition

Figure 2. Improved Decomposition

44

heuristics described in HiCuts that cuts along the dimension
with the largest number of distinct components (projected
intervals) of rules in that dimension, we can see that the
number of distinct components of rules in X, Y dimension is
5 and 7 respectively. As a result, the dimension been chosen
at the root node is Y. Figure 4 shows the tree built if we set
binth = 4 and spfac = 2.

From the tree built, we can see that three rules (R8, R9,
and R11) are replicated and the depth of the tree is 2. But if
HiCuts is intelligent enough, it should choose dimension X
as Figure 5 shows, where a tree of depth one is built without
any rule replication.

In Figure 5, the rules in the subset are all small in X-
dimension. This facilitates cuts along the X-dimension with
little rule replications. Since the rules have been grouped
into several subsets, with each subset sharing the same small
field, FiCuts is fed with this information, and exploits it for
efficient cuttings. In essence, FiCuts has two features as
follows:

1) Simplicity: FiCuts conducts cuttings on the subset
along a fixed dimension instead of changing cutting
dimensions dynamically based on local optimization
considerations.

2) Adaptivity: FiCuts can decide when to stop this one-
dimensional cutting and resort to other more effective
cutting methods.

The first feature enables FiCuts to build short trees with
significant reduction on rule replications, as contrasted in
Figure 4 and Figure 5. FiCuts uses a heuristic to pick a
suitable np (i.e., the number of cuts to make) in the fixed
dimension. But with the shrinking of the search space, rule
replications begin to rise with fine cuts. The second feature
of FiCuts is to address this problem, which will be
elaborated in the next part.

C. Multi-dimensional Cutting
As discussed in the previous part, rule replications

become intense at some fine cuts, and the fixed-dimensional
FiCuts is no longer the optimal algorithm. Fortunately,
FiCuts is able to detect this problem and signals switching
to a more appropriate multi-dimensional cutting.

FiCuts makes the decision as follows. If the number of
cuts np at a node is less than a predefined MAXCUTS.
Based on the space measure function described in HiCuts
(sm = �i NumRules(childi) + np), it is not difficult to see
that there are two cases resulting in np < MAXCUTS: either
the subspace becomes small enough that causes serious rule
replications, or there are very few number of rules for
satisfying the space measure function above with
MAXCUTS.

We show how HybridCuts works on the example in
Figure 3. First, the decomposition step partitions the rule set
into two subsets, as shown in Figure 6 and Figure 7
respectively. Then a two-stage cutting process is carried out.

At the one-dimensional cutting stage, FiCuts processes
the corresponding subset until a leaf node is formed, or it
discovers that it no longer works efficiently. Figure 6 shows
the decision tree built for the Y-Subset by FiCuts if we set
binth=2 and spfac=2. From this example, we can see that
FiCuts just works fine: it builds the whole decision tree
without any rule replication. However, Figure7 shows a
different scenario, where pure FiCuts does not solve the
problem. When FiCuts reaches Node1, it is no longer
effective by continuing cutting along the X-axis. Therefore,
it is necessary to resort to other effective techniques.
Fortunately, this case only happens at tree nodes near the
leaf level, and a multi-dimensional cutting algorithm will be
applied to address it.

In the multi-dimensional cutting stage, we use HyperCuts
because it works efficiently for small rule sets and the
number of rules in nodes is much smaller than original
subset after the processing of FiCuts. The result of the
multi-dimensional cutting is illustrated with two red dotted
lines in Figure 7.

Figure 6.Y-Subset and hybrid structure

Figure 4. Non-intelligent cutting

Figure 5. Intelligent cutting

45

D. Optimization

Based on previous observations that many classifiers
specify a very limited number of port ranges, it can be
derived that most rules have at least one small IP address
field (SA or DA). Table II shows the percentage of big rules
for rule set generated from ClassBench.

Based on this observation, we propose an optimization on
decomposition to further reduce the number of decision
trees. For a 5-tuple rule set, we decompose it into three
subsets:

1) Big-subset: Both SA and DA are big field;
2) SA-subset: SA is a small field for each rule;
3) DA-subset: DA is a small field for each rule.

The processing procedure for each subset is the same as
above, and in the experimentation, the result of this
optimized HybridCuts will be used for comparison.

V. EXPERIMENTAL RESULTS
In this section, we present the performance results of

HybridCuts with two other representative cutting techniques:
EffiCuts and HyperCuts. The rule sets used in our

experiments are publicly available from [23], which
provides three types of rule sets: Access Control List (ACL),
Firewall (FW) and IP Chain (IPC). Each rule set is named
by its type and size, e.g., ACL_10K refers to the access
control list rule set containing about 10,000 rules. Since
100K rule sets are not available in [23], we generate them
using ClassBench [14], which creates synthetic classifiers
with characteristics representative of real-word classifiers.
We are also very grateful to the authors of EffiCuts for
providing us the source code, which contains EffiCuts and
an implementation of HiCuts and HyperCuts by them. This
enables us to make a fair and justifiable comparison. In
response, our implementation of HybridCuts has also been
made public to the open-source community hosted at
GitHub (https://github.com/lwj4333765/HybridCuts).

The primary metrics for evaluating the performance of a
packet classification are memory consumption and the
number of memory accesses, and we report them as follows.

A. Memory Consumption
Table III shows the memory consumption per rule for

HyperCuts, EffiCuts, and our HybridCuts. Both EffiCuts
and HybirdCuts achieve significant memory reduction
compared to HyperCuts. This is especially obvious for FW
classifiers (HyperCuts runs out of memory for FW-100K
rule set, so its results are N/A in Table III and IV). The
reason of this memory saving, as explained in [12], is that a
significant fraction of FW rules (about 30%) have many
wildcard fields, incurring rampant replication of rules in
HyperCuts. Our HybridCuts consumes similar amount or
less memory compared to EffiCuts. Note that the primary
objective of our work is to achieve less memory accesses
without sacrificing memory consumption and ease of
implementation. We can see from Table III that the
excellent memory efficiency of EffiCuts is kept in our work.

As for another partition-based technique ParaSplit that is
implemented on FPGA, we are unable to repeat their
experiments. But from the results reported in [19], we can
see that our work consumes less memory than ParaSplit. For
example, they report that IPC_10K consumes roughly 110
bytes per rule for EffiCuts, and 100 bytes for ParaSplit. In
our experimentation, HybridCuts consumes only 46 bytes
on IPC_10K. It is worth noting that our experiments reports
50 bytes for EffiCuts, significantly less than the result
reported in [19], partly because their implementation of
EffiCuts does not perform tree merging. More interestingly,
for FW_10K, ParaSplit reports 80 bytes per rule, where our
HybridCuts consumes only 25 bytes.

TABLE III. MEMORY CONSUMPTION (BYTES/RULE)

Binth=8
Spfac=4
T’=(16, 16)

ACL FW IPC

1K 10K 100K 1K 10K 100K 1K 10K 100K

HyperCuts 146 198 104 2.6K 2.2M N/A 210 3.3K 0.2M
EffiCuts 39 48 52 46 36 81 39 50 36
HybridCuts 31 47 29 38 25 40 26 46 37

Figure 7. X-Subset and hybrid structure

TABLE II. PERCENTAGE OF BIG RULES

Big rules% T’(16,16) T’(12,12) T’(8,8)

ACL_1K
ACL_10K
ACL_100K

0.55%
0.22%
0.00%

0.55%
0.22%
0.00%

3.93%
3.11%
0.00%

FW_1K
FW_10K
FW_100K

4.17%
1.54%
2.15%

4.30%
1.85%
2.54%

6.07%
4.59%
5.56%

IPC_1K
IPC_10K
IPC_100K

0.64%
0.10%
0.78%

1.49%
1.38%
2.80%

5.33%
4.33%

13.28%

46

B. Memory Accesses
Table IV shows the performance in terms of the number

of memory accesses for HyperCuts, EffiCuts, and our
HybridCuts. It is clear that our work performs much better
than EffiCuts. The improvement on FW rule sets is more
striking, achieving an average of 3.4x speed-up. This
improvement, combined with the result in Table III, justifies
our claim that a careful combination of decomposition and
cutting can avoid rule replications and produce efficient
decision-trees at the same time.

To gain more insights, we look into the sizes of the
individual subsets and their respective decision trees. The
results are shown by Figure 8 and Figure 9 respectively.
From Figure 8, it can be seen that very few rules are
categorized as big rules, and the subsets corresponding to
SA and DA fields are balanced in size. What’s more
important is that this balance extends to the corresponding
decision-trees. As shown in Figure 9, the SA tree and DA
tree are almost close in sizes in many cases. Although in a
few cases, the big rules contribute an appreciable amount of
memory, it does not affect the whole memory consumption
seriously. Thus, enabled by the clever partition algorithm
and effective FiCuts embedded in the first stage for subset
trees, we can build fatter and shorter trees with seldom rule
replications for each subset compared with traditional
cutting algorithms.

C. Potential of Parallelization
If parallel searching on multiple trees is desired for

speedup in implementation, a natural concern is whether the
size balance of the subsets and trees leads to similar balance
in height, as the overall performance of a parallel
implementation is constrained by the worst case. Therefore,
we look at the worst-case tree height among the multiple
trees. This result is presented in Figure 10. It can be seen
that in most cases, the worst-case height of a single tree
(with rules in leaf nodes included) is half of or less than the
overall number of memory accesses on all the trees. This
means that the trees constructed are balanced in height
among each other, amenable to a parallel implementation
with a potential 2x speedup.

ParaSplit does not report the number of overall memory
accesses for a packet, as it aims at hardware implementation,
whose performance is decided by the worst-case height of
the trees. Therefore, we can compare our results with
ParaSplit in terms of worst-case height of trees. In ParaSplit,
the results on IPC_10K and FW_10K are both 25. Our
results are 18 and 10 respectively, as shown in Figure 10.
The shorter trees mean that if similar hardware acceleration
is employed, HybridCuts is likely to achieve higher
performance than ParaSplit. Moreover, our technique
requires less hardware resources, as only three decision-
trees are constructed.

VI. CONCLUSION
This paper presents HybridCuts, a new packet

classification technique that combines decomposition and
decision-tree techniques to improve storage and
performance simultaneously. We develop a rule set
decomposition algorithm based on the observation that most
rules have at least one small field. This decomposition
avoids the trouble of result aggregation suffered by
traditional decomposition-based approaches. Instead, it
yields subsets of rules amenable to very efficient cutting
algorithms. To better exploit the characteristics of the
subsets, a two-stage cutting algorithm is carried out. Being
aware of the global characteristics of the subset under
processing, the first stage employs a one-dimensional
cutting algorithm called FiCuts. It either ends at the leaf
nodes, or invokes an alternate multi-dimensional cutting
algorithm when realizing that it no longer works efficiently.

TABLE IV. NUMBER OF MEMORY ACCESSES

Binth=8
Spfac=4
T’=(16, 16)

ACL FW IPC

1K 10K 100K 1K 10K 100K 1K 10K 100K

HyperCuts 24 24 22 35 27 N/A 26 31 26
EffiCuts 41 41 36 95 76 117 92 110 80
HybridCuts 24 29 29 31 17 42 25 40 31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ACL_1K ACL_10K ACL_100K FW_1K FW_10K FW_100K IPC_1K IPC_10K IPC_100K

SA_SIZE DA_SIZE BIG_SIZE

Figure 8. The sizes of subsets

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ACL_1K ACL_10K ACL_100K FW_1K FW_10K FW_100K IPC_1K IPC_10K IPC_100K

SA_MEM DA_MEM BIG_MEM

Figure 9. The sizes of trees

0

5

10

15

20

25

30

35

40

45

ACL_1K ACL_10K ACL_100K FW_1K FW_10K FW_100K IPC_1K IPC_10K IPC_100K

Overall #memory accesses Worst-case tree height

Figure 10. Potential of parallelization

47

Compared to the state-of-the-art EffiCuts algorithm,
HybridCuts achieves significant speedup with the same
level of reduction on memory consumption. Meanwhile, the
very small and fixed number of decision-trees, which are
balanced in size and height, enables a much easier
implementation than EffiCuts in practice. Compared to
ParaSplit, a recent work that also employs rule set
partitioning and speeds up its algorithm with an FPGA
implementation, our HybridCuts works better in terms of
memory consumption and memory accesses, and is also
amenable for FPGA acceleration.

ACKNOWLEDGMENT
This work is supported by the grant of Shenzhen

municipal government for basic research on Internet
technologies (Outstanding Young Scholar, No.
JC201005270274A).

REFERENCES
[1] D. E. Taylor, “Survey and taxonomy of packet classification

techniques,” ACM Computing Surveys, 2005. 37(3): p. 238-275.
[2] H. Liu, “Efficient mapping of range classifier into Ternary-CAM,” in

IEEE HOTI, 2002.
[3] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,

“Algorithms for advanced packet classification with ternary CAMs,”
in ACM SIGCOMM, 2005.

[4] E. Spitznagel, , D. E. Taylor, and J. Turner, “Packet classification
using extended TCAMs,” in IEEE ICNP, 2003.

[5] Y. Ma and S. Banerjee, “A smart pre-classifier to reduce power
consumption of TCAMs for multi-dimensional packet classification,”
in ACM SIGCOMM, 2012.

[6] Q. Dong, et al, “Packet classifiers in ternary CAMs can be smaller,”
in ACM SIGMETRICS, 2006.

[7] W. Jiang and VK. Prasanna, “Large-scale wire-speed packet
classification on FPGAs,” in FPGA, 2009.

[8] B. Vamanan and T. Vijaykumar, “TreeCAM: Decoupling Updates
and Lookups in Packet Classification,” in ACM CoNEXT, 2011.

[9] V. Srinivasan, et al, “Fast and Scalable Layer Four Switching,” ACM
SIGCOMM, 1998.

[10] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in IEEE HOTI, 1999.

[11] S. Singh , F Baboescu, G. Varghese, J. Wang, “Packet classification
using multidimensional cutting,” in ACM SIGCOMM, 2003.

[12] B. Vamanan, G. Voskuilen, and T. Vijaykumar, “EffiCuts: optimizing
packet classification for memory and throughput,” in ACM
SIGCOMM, 2010.

[13] TV. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” in
ACM SIGCOMM, 1998.

[14] D. E. Taylor. and J. S. Turner, “Classbench: A packet classification
benchmark,” in IEEE INFOCOM, 2005.

[15] M. Overmars and A. Stappen, “Range searching and point location
among fat objects,” Journal of Algorithms, 1996. 21(3): p. 629-656.

[16] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for
core routers: Is there an alternative to CAMs?” in IEEE INFOCOM
2003.

[17] P. Gupta and N. McKeown, “Packet classification on multiple fields,”
in ACM SIGCOMM, 1999.

[18] F. Baboescu and G. Varghese, “Scalable packet classification,” in
ACM SIGCOMM, 2001.

[19] J. Fong, , X. Wang, Y. Qi, J. Li, W. Jiang, “ParaSplit: A Scalable
Architecture on FPGA for Terabit Packet Classification,” in IEEE
HOTI, 2012.

[20] A. Feldman and S. Muthukrishnan, “Tradeoffs for packet
classification,” in IEEE INFOCOM, 2000.

[21] Y. Qi, B. Xu, F. He, B. Yang, J. Yu and J. Li. “Towards High-
performance Flow-level Packet Processing on Multi-core Network
Processors,” in ANCS, 2007.

[22] Y. Qi, L. Xu, B. Yang, Y. Xue and J. Li, Packet Classification
Algorithms: From Theory to Practice, in IEEE INFOCOM, 2009.

[23] http://www.arl.wustl.edu/~hs1/PClassEval.html

48

