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Abstract—Packet classification is an enabling function for a 
variety of Internet applications such as access control, quality 
of service and differentiated services. Decision-tree and 
decomposition are the most well-known algorithmic 
approaches. Compared to architectural solutions, both 
approaches are memory and performance inefficient, falling 
short of the needs of high-speed networks. EffiCuts, the state-
of-the-art decision-tree technique, significantly reduces 
memory overhead of classic cutting algorithms with separated 
trees and equi-dense cuts. However, it suffers from too many 
memory accesses and a large number of separated trees. 
Besides, EffiCuts needs comparator circuitry to support equi-
dense cuts, which makes it less practical. Decomposition based 
schemes, such as BV, can leverage the parallelism offered by 
modern hardware for memory accesses, but they have poor 
storage scalability. In this paper, we propose HybridCuts, a 
combination of decomposition and decision-tree techniques 
that improves storage and performance simultaneously. The 
decomposition part of HybridCuts has the benefits of 
traditional decomposition-based techniques without the 
trouble of aggregating results from a large number of bit 
vectors or a set of big lookup tables. Meanwhile, thanks to the 
clever partitioning of the rule set, an efficient cutting algorithm 
following the decomposition can build short decision trees with 
significant reduction on rule replications. Using ClassBench, 
we show that HybridCuts achieves similar memory reduction 
compared to EffiCuts, but it outperforms EffiCuts significantly 
in terms of memory accesses for packet classification. In 
addition, HybridCuts is more practical for implementation 
than EffiCuts, which maintains complicated data structures 
and requires special hardware support for efficient cuts. 

Keywords-Packet Classification; Decomposition; Decision-
Tree; Rule Replication; Performance 

I.  INTRODUCTION 
Modern Internet routers provide services beyond basic 

packet forwarding, such as access control, quality of service, 
and differentiated services. All such functionalities require 
packet classification, which decides the action to be taken on 
a packet based on multiple fields in the packet header. A 
predefined classifier consisting of a set of rules is looked up 
for a match for these purposes. To match a rule, packet 
classification needs to compare multiple header values of the 
incoming packet against the field values of all the rules in the 
classifier to determine the type of actions (e.g., drop or 
permit) to be taken on the packet. 

Numerous packet classification techniques have been 
proposed in the past fifteen years [1]. They can be 
categorized broadly into two major approaches: architectural 

and algorithmic. Ternary Content Addressable Memories 
(TCAMs) based techniques are the representative 
architectural approaches [2-6]. TCAMs are widely used 
because of their ability to process packets at line speed. But 
TCAMs are expensive, and suffer from scalability and high 
power consumption [7]. To address the high power 
consumption problem, recent TCAM related research efforts 
try to make tradeoffs between power consumption and 
lookup performance with multiple accesses to a set of 
TCAM subarrays, such as the TreeCAM [8]. Another issue 
with TCAMs is the rule duplication problem related to the 
port number fields when transforming a single range into an 
equivalent set of multiple prefixes for the convenience of 
TCAM operations [9]. As a result, efficient algorithmic 
solutions using ordinary memories such as DRAM/SRAM 
are still under active investigation.  

Decision-tree and decomposition are the most well-
known algorithmic approaches. Decision-tree based 
schemes, such as HiCuts [10] and HyperCuts [11], separate 
the search space into many equal-sized sub-spaces using 
local optimizations. But both schemes have the same rule 
replication problem, which might cause large memory 
overhead. Although EffiCuts [12], the state-of-the-art 
decision-tree technique, can avoid large memory overhead 
with Separable trees and Equi-dense cuts, it suffers from 
several problems: 1) too many memory accesses, which 
worsen the low-speed problem of algorithmic techniques; 2) 
a large and variable number of separated trees, which raises 
its barrier for practical implementation; 3) and the needs of 
specialized comparator circuitry to support equi-dense cuts, 
which further limits its adoption in practice. Decomposition 
based schemes, such as BV [13], can leverage the parallelism 
offered by modern hardware to improve performance, but 
they have poor storage scalability. Therefore, these 
algorithmic approaches are memory and performance 
inefficient, falling short of the needs of high-speed networks. 
Thus, it is worth investigating new algorithms with higher 
performance and better scalability. 

In this paper, we propose HybridCuts, a combination of 
decomposition and decision-tree techniques that improves 
storage and performance simultaneously. The decomposition 
part of HybridCuts has the benefits of traditional 
decomposition-based techniques, but without the trouble of 
aggregating results from a large number of bit vectors or a 
set of big lookup tables. Meanwhile, thanks to the clever 
partitioning of the rule set, an efficient cutting algorithm 
following the decomposition is employed to build short 
decision trees with significant reduction on rule replications. 
The main contributions of this paper include: 
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� A rule set decomposition algorithm based on the 
observation that most rules have at least one small 
field. The proposed decomposition has the benefits of 
traditional decomposition-based techniques, but 
without the trouble of expensive aggregations. 

� A novel one-dimensional cutting algorithm called 
FiCuts, which has a global view on the characteristics 
of the subset of rules, and therefore is simpler and 
works more intelligently than HiCuts. 

� A two-stage cutting framework which combines one-
dimensional cutting and multi-dimensional cutting 
techniques, and is adaptive at building short decision 
trees with significant reduction on rule replications. 

 

We evaluate our algorithm using ClassBench [14] and 
show that HybridCuts is able to produce a very small 
number of short decision trees with low memory overhead. 
Even for rule sets up to 100K entries, the constructed data 
structure can be accommodated in on-chip memory. In 
addition, it is quite feasible that a carefully pipelined and 
parallelized hardware implementation of HybridCuts will 
achieve a line-speed performance.  

The rest of the paper is organized as follows. Section II 
introduces the background. Section III briefly summarizes 
the related work. Section IV presents the technical details of 
HybridCuts. Section V provides experimental results. Finally, 
Section VI concludes the paper. 

II. BACKGROUND 

A. The Packet Classification Problem 
The purpose of packet classification is to find a matching 

rule from a packet classifier for a packet. A packet classifier 
is a set of rules, with each rule R consisting of a tuple of F 
field values (exact value, prefix or range) and an action to be 
taken in case of a match. In today’s classifiers, a typical rule 
is a 5-tuple: the source and destination IP addresses (i.e., SA, 
DA), the source and destination ports (i.e., SP, DP), and the 
protocol number (i.e., Prot). The rules are often prioritized to 
resolve potential multiple match scenarios.  

B. Complexity in Theory 
There are several standard problems in the field of 

computational geometry that resemble packet classification. 
From a geometric point of view, each rule R represents a 
hyper-rectangle and an incoming packet p represents a point 
in F-dimensional space.  If a packet p matches a particular 
rule R, then the point represented by p falls into the hyper-
rectangle specified by R. Therefore, packet classification 
can be treated as a point location problem in computational 
geometry. According to [15], for N non-overlapping hyper-
rectangles in F-dimensional space, the best bounds for 
locating a point are either �(log N) time with �(NF) space, 
or �(logF-1 N) time with �(N) space. Therefore, the 
mathematic complexity of packet classification is extremely 
high as the number of rules or dimensions increase. Clearly, 
this is impractical: with just 1000 rules and 4 fields, a 
solution is either impracticably (NF is about 1000G) or too 
slow (logF-1 N is about 1000 memory accesses). 

C. Complexity in Practice 
As the above example illustrates, it is infeasible to design 

a single algorithm that can perform well in all cases. 
Fortunately, packet classification rules in real-life 
applications have some inherent characteristics that can be 
exploited to reduce the complexity [11, 16-22]. The 
following is a distillation of previous observations relevant 
to our work:  

 

� The protocol field is restricted to a small set of values, 
e.g., TCP, UDP, and the wildcard. 

� Rules specify a limited number of distinct transport 
port ranges. 

� The number of address prefixes matching a given 
address is typically five or less. 

� The number of rules matching a given packet is 
typically five or less. 

� Many different rules share the same field values. 

III. RELATED WORK 
A lot of algorithmic approaches have been proposed for 

packet classification in the past fifteen years. They can be 
categorized into two major groups: decomposition based [9, 
13, 18, 19] and decision-tree based [9-12, 16, 19-22] 
algorithms. In decomposition based schemes, independent 
search on each header field is performed for the whole rule 
set, and then the results are integrated to get the matching 
rule. These approaches offer high throughput but require a 
large amount of storage in order to aggregate the results 
from individual search operations efficiently. In decision-
tree based schemes, the geometric view of the packet 
classification problem is taken and a decision tree is built. 
They work by recursively cutting the search space into 
smaller subspaces. This is repeated until a predefined 
number of rules are contained by each subspace. When a 
packet arrives, the decision tree is traversed to find a 
matching rule at a leaf node. Next, we give a more detailed 
review on a few representative techniques. 

A. Parallel Bit-Vectors (BV) 
Parallel Bit-Vectors scheme [13] is one of the most 

representative decomposition based solutions. It works on 
the individual fields of rules independently for partially 
matching results, which are encoded as bit vectors. Each bit 
in a bit vector stands for a partial matching result to a single 
rule. Then a bit-wise AND operation on all bit vectors is 
performed to get the final result. The most significant “1” 
bit in the final bit vector denotes a matched rule with the 
highest priority. Parallel BV approach has �(log N) search 
time and a rather unfavorable �(N2) memory requirement. 
Aggregate Bit-Vector(ABV) [18] can be viewed as an 
improved version of BV, which seeks to improve the 
performance of BV based on the fact that real filter sets 
often result in sparse vectors containing a large portion of 
“0”s inside. ABV makes use of this phenomenon by 
compressing the bit vectors into several chunks containing 
“1” bits. Although ABV can improve performance to some 
extent, the unfavorable memory problem still exists. 
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B. HiCuts and HyperCuts 
HiCuts [10] and HyperCuts [11] take a geometric view of 

the packet classification problem. Each rule is viewed as a 
hypercube in an F-dimensional space, where F is the 
number of fields in a rule. Each packet defines a point in 
this F-dimensional space. HiCuts cuts the search space into 
many equal-sized subspaces recursively until the rules 
covered by each subspace is less than the pre-defined bucket 
size called binth. This cutting process is carried out using a 
tree data structure, which is called a decision-tree. The root 
node of the tree covers the whole searching space which 
contains all rules. HiCuts selects one dimension to cut and 
decides how many subspaces should be cut using a space 
optimization function with a parameter called spfac. In case 
a rule spans multiple subspaces, rule replication happens, 
which is an undesirable case. Upon the construction of the 
decision tree, an incoming packet searches along the tree 
using its field values until a leaf node is hit, then a linear 
search is taken to get a best matched rule, if any, among the 
ones in the leaf node. HyperCuts is an improved version of 
HiCuts, which is more flexible in that it allows cutting on 
multiple fields per step, resulting in a fatter and shorter 
decision tree. Both HiCuts and HyperCuts have the same 
rule replication problem, leading to significant memory 
overhead, especially for large rule tables. 

C. EffiCuts  
EffiCuts [12], a state-of-the-art decision-tree technique, 

identifies two primary causes for large memory overhead: 
big rules suffer a lot of replications, and equi-sized cuts 
create many ineffective nodes. Based on these observations, 
EffiCuts proposes two techniques to reduce memory 
overhead. One is that EffiCuts uses a partition method to 
separate rule set into several subsets, depending on whether 
the value of each dimension is wildcard (or almost wildcard) 
and each subset creates its own decision-tree independently 
using HyperCuts. The other one is equi-dense cuts instead 
of equi-size cuts, which tries to combine similar nodes into 
one. Although EffiCuts reduces memory overhead 
dramatically, Efficuts suffers from too many memory 
accesses and a large number of separated trees (31 in the 
worst-case, and 12 on average). Efficuts alleviates this 
problem with selective tree merging. However, the merging 
is restricted to pairs of trees meeting special conditions. 
Otherwise, it will destroy separability and result in 
significant rule replications with arbitrary tree-merging. In 
our experiments, we observe that the selective tree merging 
results in 8 trees on average. 

D. ParaSplit 
ParaSplit [19] is another recent work that is decision-tree 

based and makes use of rule set partitioning to significantly 
reduce rule replications. It is different from EffiCuts in that 
its objective is for efficient hardware implementation using 
FPGAs. It employs a complex heuristic for rule set 
partitioning, which may require 5000 to 10000 iterations to 
reach an optimal partitioning. For hardware acceleration, it 
applies parallelism and pipelining in conjunction: the 
multiple trees are searched in parallel, and the search on 

individual trees is pipelined. Although HybridCuts proposed 
in this work is an algorithmic solution, it is perfectly 
suitable for similar hardware accelerations.  

IV. HYBRIDCUTS 
As the authors of EffiCuts observed, the overlapping of 

rules in a classifier varies vastly in size, causing extensive 
replications of large rules during the algorithms’ fine cuts 
for separating the small rules. An effective solution to 
address this problem is to decompose the original set into 
several subsets for cutting-based algorithms. But EffiCuts 
applies this principle aggressively, leading to an 
uncontrolled large number of trees. In this paper, we 
propose a new decomposition algorithm to separate rules 
into a few subsets, and then we introduce a set of efficient 
cutting algorithms on the individual subsets.  

A. Decomposition-based Framework 
EffiCuts produces up to 31 decision trees with a partition 

method that takes the properties of rules on all five 
dimensions into consideration. Unlike EffiCuts, we 
decompose rules based on their characteristics shared in a 
single dimension. This decomposition produces only 6 
subsets for a typical 5-tuple rule set. In fact, since we do not 
consider protocol dimension, just 5 subsets will be 
generated in our baseline algorithm, and this number is 
further reduced to 3 with an optimization. 

The rationale behind this strategy of decomposition is 
simple: by grouping rules that are small in the same field, 
we get a dimension in the space where the extensive 
replications bothering traditional cutting-based algorithms 
by wide overlaps are significantly reduced. In addition, 
subsets decomposed this way enable a simple and space-
efficient one-dimensional cutting algorithm. 

Definitions. To proceed to more detailed discussion, we 
first introduce some definitions and observations used by 
HybridCuts. Given an N-dimensional rule R = (F1, F2, F3 

... 
FN), Leni represents the length of field Fi, and a threshold 
value vector T = (T1, T2, T3 

... TN). We call Fi is a small field 
if Leni � Ti, or a big field if Leni > Ti. Then, we define the 
following concepts for R:  

 

Big rule: ∀i ∈{1, 2, 3 ... N}, Fi in R is a big field; 
Small rule: ∃i ∈{1, 2, 3 ... N}, Fi in R is a small field; 

TABLE I.       PERCENTAGE OF BIG RULES 

Big rules% T’(16,16,8,8) T’(12,12,6,6) T’(8,8,4,4) 

ACL_1K 
ACL_10K 
ACL_100K 

0.55%  
0.22% 
0.00% 

0.55% 
0.22% 
0.00% 

3.93% 
3.11% 
0.00% 

FW_1K 
FW_10K 
FW_100K 

1.14% 
0.79% 
1.28% 

1.52% 
1.13% 
1.70% 

3.29% 
3.87% 
4.71% 

IPC_1K 
IPC_10K 
IPC_100K 

0.21% 
0.04% 
0.48% 

0.96% 
0.94% 
1.86% 

4.85% 
3.75% 
9.84% 
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For a typical 5-tuple rule, since the protocol field is 
restricted to a small set of values (tcp, udp, *, etc), we just 
consider the other four fields. Then the threshold value 
vector T for 5-tuple rules is simplified to a four-dimensional 
vector and a rule R(SA, DA, SP, DP, Prot) is called a small 
rule if there exists at least one small field in {SA, DA, SP, 
DP}. For the sake of convenience in writing, we use a 
logarithmic vector T’ to represent the threshold value vector 
T. For example, if we set threshold value vector T = (216, 216, 
28, 28), then index logarithmic T’ = (16, 16, 8, 8). 

Table I shows the percentage of big rules under three 
different thresholds for a number of rule sets from 
ClassBench. It is clear that the percentage of big rules is 
very low even under very demanding thresholds. This 
indicates that the vast majority of the rules have at least one 
small field satisfying a threshold T as narrow as Table I 
gives. 

Field-wise decomposition. Based on above definitions 
and observations, we decompose a 5-tuple rule set into the 
following five subsets without duplicates among each other.  

 

1) Big-subset: SA, DA, SP and DP are all big field; 
2) SA-subset: SA is a small field for each rule; 
3) DA-subset: DA is a small field for each rule; 
4) SP-subset: SP is a small field for each rule; 
5) DP-subset: DP is a small field for each rule. 
 

Many rules may have multiple small fields, and there 
exists options on deciding where to go for a rule with 
multiple small fields. A simple metric for decision is the 
balance on the sizes of the subsets. For example, when 
processing a rule R with two small fields: SA and DA, 
suppose the sizes of the SA-subset and the DA-subset up to 
now are N1 and N2 respectively, then rule R will go to SA-
subset if N1� N2, or to DA-subset vice versa. There exist 
several other guidelines for decomposition, which will not 
be discussed here for the limitation of space.  

Post-decomposition. The proposed decomposition is 
somewhat like the first step of a traditional decomposition 
based approach, where rules are projected into a specific 
field for a field-wise matching. However, the decomposition 
here is quite different from traditional schemes in two 
aspects. First, rules are partitioned into multiple subsets, 
instead of all being projected onto each field. Second, the 
partitioned subset will undergo a cutting process to find a 
single match, instead of finding multiple rules (often 
encoded in a long bit vector) matching the incoming packet 
on the projected field. Figure 1 and Figure 2 highlights their 
differences clearly. 

From Figure 1 and Figure 2, it can be seen that the 
proposed decomposition scheme can leverage the benefits of 
traditional decomposition-based techniques without the 
time- and space- inefficient aggregation step. In more details, 
instead of searching in each dimension for the whole rule set, 
we first partition the rule set into several subsets using the 
algorithm described above. For each subset, we build a 
decision-tree with a hybrid of cutting algorithms efficient at 
different tree-construction stages. Then matching operations 
can be performed on these decision trees in parallel. Finally, 
instead of aggregating multiple bit vectors to get the final 
matching in traditional decomposition based techniques, we 
just need to perform a simple priority-based selection 
among the outcomes from the individual search processes.  

B. FiCuts: A One-Dimensional Cutting Technique 
After presenting the decomposition-based framework, we 

elaborate on the decision-tree construction process 
embedded in the middle part of Figure 2. First, we introduce 
a simple but effective one-dimensional cutting algorithm 
called Fixed intelligent Cuttings (FiCuts), which will be 
applied in the first stage of decision-tree construction. 
FiCuts derives from HiCuts, but with a better global view 
on the characteristics of the rule set. We use a small 
example of two-dimensional rule set shown in Figure 3 for 
subsequent discussion. 

HiCuts is an ‘Intelligent’ cutting algorithm since it can 
choose the cutting dimension and decide the number of cuts 
with local heuristics at each tree node. However, 
constrained by the lack of a global view on the properties of 
a rule set, HiCuts does not always make intelligent cutting 
decisions. Take the rules shown in Figure 4 for example (a 
subset of ‘vertical’ rules in Figure 3), if we use the 

 
Figure 3. An example rule set 

 
Figure 1. Traditional Decomposition 

 
Figure 2. Improved Decomposition 
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heuristics described in HiCuts that cuts along the dimension 
with the largest number of distinct components (projected 
intervals) of rules in that dimension, we can see that the 
number of distinct components of rules in X, Y dimension is 
5 and 7 respectively. As a result, the dimension been chosen 
at the root node is Y. Figure 4 shows the tree built if we set 
binth = 4 and spfac = 2. 

From the tree built, we can see that three rules (R8, R9, 
and R11) are replicated and the depth of the tree is 2. But if 
HiCuts is intelligent enough, it should choose dimension X 
as Figure 5 shows, where a tree of depth one is built without 
any rule replication. 

In Figure 5, the rules in the subset are all small in X-
dimension. This facilitates cuts along the X-dimension with 
little rule replications. Since the rules have been grouped 
into several subsets, with each subset sharing the same small 
field, FiCuts is fed with this information, and exploits it for 
efficient cuttings. In essence, FiCuts has two features as 
follows: 

 

1) Simplicity: FiCuts conducts cuttings on the subset 
along a fixed dimension instead of changing cutting 
dimensions dynamically based on local optimization 
considerations.  

2) Adaptivity: FiCuts can decide when to stop this one-
dimensional cutting and resort to other more effective 
cutting methods. 

 

The first feature enables FiCuts to build short trees with 
significant reduction on rule replications, as contrasted in 
Figure 4 and Figure 5. FiCuts uses a heuristic to pick a 
suitable np (i.e., the number of cuts to make) in the fixed 
dimension. But with the shrinking of the search space, rule 
replications begin to rise with fine cuts.  The second feature 
of FiCuts is to address this problem, which will be 
elaborated in the next part. 

C. Multi-dimensional Cutting 
As discussed in the previous part, rule replications 

become intense at some fine cuts, and the fixed-dimensional 
FiCuts is no longer the optimal algorithm. Fortunately, 
FiCuts is able to detect this problem and signals switching 
to a more appropriate multi-dimensional cutting. 

FiCuts makes the decision as follows. If the number of 
cuts np at a node is less than a predefined MAXCUTS. 
Based on the space measure function described in HiCuts 
(sm = �i  NumRules(childi) + np), it is not difficult to see 
that there are two cases resulting in np < MAXCUTS: either 
the subspace becomes small enough that causes serious rule 
replications, or there are very few number of rules for 
satisfying the space measure function above with 
MAXCUTS. 

We show how HybridCuts works on the example in 
Figure 3. First, the decomposition step partitions the rule set 
into two subsets, as shown in Figure 6 and Figure 7 
respectively. Then a two-stage cutting process is carried out. 

At the one-dimensional cutting stage, FiCuts processes 
the corresponding subset until a leaf node is formed, or it 
discovers that it no longer works efficiently. Figure 6 shows 
the decision tree built for the Y-Subset by FiCuts if we set 
binth=2 and spfac=2. From this example, we can see that 
FiCuts just works fine: it builds the whole decision tree 
without any rule replication. However, Figure7 shows a 
different scenario, where pure FiCuts does not solve the 
problem. When FiCuts reaches Node1, it is no longer 
effective by continuing cutting along the X-axis. Therefore, 
it is necessary to resort to other effective techniques. 
Fortunately, this case only happens at tree nodes near the 
leaf level, and a multi-dimensional cutting algorithm will be 
applied to address it. 

In the multi-dimensional cutting stage, we use HyperCuts 
because it works efficiently for small rule sets and the 
number of rules in nodes is much smaller than original 
subset after the processing of FiCuts. The result of the 
multi-dimensional cutting is illustrated with two red dotted 
lines in Figure 7. 

 
Figure 6.Y-Subset and hybrid structure

 
Figure 4. Non-intelligent cutting 

 
Figure 5. Intelligent cutting 
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D. Optimization   

Based on previous observations that many classifiers 
specify a very limited number of port ranges, it can be 
derived that most rules have at least one small IP address 
field (SA or DA). Table II shows the percentage of big rules 
for rule set generated from ClassBench. 

Based on this observation, we propose an optimization on 
decomposition to further reduce the number of decision 
trees. For a 5-tuple rule set, we decompose it into three 
subsets: 

 

1)  Big-subset: Both SA and DA are big field; 
2)  SA-subset: SA is a small field for each rule; 
3)  DA-subset: DA is a small field for each rule. 

 

The processing procedure for each subset is the same as 
above, and in the experimentation, the result of this 
optimized HybridCuts will be used for comparison. 

V. EXPERIMENTAL RESULTS 
In this section, we present the performance results of 

HybridCuts with two other representative cutting techniques: 
EffiCuts and HyperCuts. The rule sets used in our 

experiments are publicly available from [23], which 
provides three types of rule sets: Access Control List (ACL), 
Firewall (FW) and IP Chain (IPC). Each rule set is named 
by its type and size, e.g., ACL_10K refers to the access 
control list rule set containing about 10,000 rules. Since 
100K rule sets are not available in [23], we generate them 
using ClassBench [14], which creates synthetic classifiers 
with characteristics representative of real-word classifiers. 
We are also very grateful to the authors of EffiCuts for 
providing us the source code, which contains EffiCuts and 
an implementation of HiCuts and HyperCuts by them. This 
enables us to make a fair and justifiable comparison. In 
response, our implementation of HybridCuts has also been 
made public to the open-source community hosted at 
GitHub (https://github.com/lwj4333765/HybridCuts). 

The primary metrics for evaluating the performance of a 
packet classification are memory consumption and the 
number of memory accesses, and we report them as follows.  

A. Memory Consumption 
Table III shows the memory consumption per rule for 

HyperCuts, EffiCuts, and our HybridCuts. Both EffiCuts 
and HybirdCuts achieve significant memory reduction 
compared to HyperCuts. This is especially obvious for FW 
classifiers (HyperCuts runs out of memory for FW-100K 
rule set, so its results are N/A in Table III and IV). The 
reason of this memory saving, as explained in [12], is that a 
significant fraction of FW rules (about 30%) have many 
wildcard fields, incurring rampant replication of rules in 
HyperCuts. Our HybridCuts consumes similar amount or 
less memory compared to EffiCuts. Note that the primary 
objective of our work is to achieve less memory accesses 
without sacrificing memory consumption and ease of 
implementation. We can see from Table III that the 
excellent memory efficiency of EffiCuts is kept in our work. 

As for another partition-based technique ParaSplit that is 
implemented on FPGA, we are unable to repeat their 
experiments. But from the results reported in [19], we can 
see that our work consumes less memory than ParaSplit. For 
example, they report that IPC_10K consumes roughly 110 
bytes per rule for EffiCuts, and 100 bytes for ParaSplit. In 
our experimentation, HybridCuts consumes only 46 bytes 
on IPC_10K. It is worth noting that our experiments reports 
50 bytes for EffiCuts, significantly less than the result 
reported in [19], partly because their implementation of 
EffiCuts does not perform tree merging. More interestingly, 
for FW_10K, ParaSplit reports 80 bytes per rule, where our 
HybridCuts consumes only 25 bytes.  

 

TABLE III.        MEMORY CONSUMPTION (BYTES/RULE) 

Binth=8
Spfac=4 
T’=(16, 16) 

ACL FW IPC

1K 10K 100K 1K 10K 100K 1K 10K 100K

HyperCuts 146 198 104 2.6K 2.2M N/A 210 3.3K 0.2M
EffiCuts 39 48 52 46 36 81 39 50 36 
HybridCuts 31 47 29 38 25 40 26 46 37 

 
Figure 7. X-Subset and hybrid structure 

TABLE II.       PERCENTAGE OF BIG RULES 

Big rules% T’(16,16) T’(12,12) T’(8,8) 

ACL_1K 
ACL_10K 
ACL_100K 

0.55% 
0.22% 
0.00% 

0.55% 
0.22% 
0.00% 

3.93% 
3.11% 
0.00% 

FW_1K 
FW_10K 
FW_100K 

4.17% 
1.54% 
2.15% 

4.30% 
1.85% 
2.54% 

6.07% 
4.59% 
5.56% 

IPC_1K 
IPC_10K 
IPC_100K 

0.64% 
0.10% 
0.78% 

1.49% 
1.38% 
2.80% 

5.33% 
4.33% 

13.28% 
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B. Memory Accesses 
Table IV shows the performance in terms of the number 

of memory accesses for HyperCuts, EffiCuts, and our 
HybridCuts. It is clear that our work performs much better 
than EffiCuts. The improvement on FW rule sets is more 
striking, achieving an average of 3.4x speed-up. This 
improvement, combined with the result in Table III, justifies 
our claim that a careful combination of decomposition and 
cutting can avoid rule replications and produce efficient 
decision-trees at the same time. 

To gain more insights, we look into the sizes of the 
individual subsets and their respective decision trees. The 
results are shown by Figure 8 and Figure 9 respectively. 
From Figure 8, it can be seen that very few rules are 
categorized as big rules, and the subsets corresponding to 
SA and DA fields are balanced in size. What’s more 
important is that this balance extends to the corresponding 
decision-trees. As shown in Figure 9, the SA tree and DA 
tree are almost close in sizes in many cases. Although in a 
few cases, the big rules contribute an appreciable amount of 
memory, it does not affect the whole memory consumption 
seriously. Thus, enabled by the clever partition algorithm 
and effective FiCuts embedded in the first stage for subset 
trees, we can build fatter and shorter trees with seldom rule 
replications for each subset compared with traditional 
cutting algorithms. 

C. Potential of Parallelization 
If parallel searching on multiple trees is desired for 

speedup in implementation, a natural concern is whether the 
size balance of the subsets and trees leads to similar balance 
in height, as the overall performance of a parallel 
implementation is constrained by the worst case. Therefore, 
we look at the worst-case tree height among the multiple 
trees. This result is presented in Figure 10. It can be seen 
that in most cases, the worst-case height of a single tree 
(with rules in leaf nodes included) is half of or less than the 
overall number of memory accesses on all the trees. This 
means that the trees constructed are balanced in height 
among each other, amenable to a parallel implementation 
with a potential 2x speedup. 

ParaSplit does not report the number of overall memory 
accesses for a packet, as it aims at hardware implementation, 
whose performance is decided by the worst-case height of 
the trees. Therefore, we can compare our results with 
ParaSplit in terms of worst-case height of trees. In ParaSplit, 
the results on IPC_10K and FW_10K are both 25. Our 
results are 18 and 10 respectively, as shown in Figure 10. 
The shorter trees mean that if similar hardware acceleration 
is employed, HybridCuts is likely to achieve higher 
performance than ParaSplit. Moreover, our technique 
requires less hardware resources, as only three decision-
trees are constructed. 

VI. CONCLUSION 
This paper presents HybridCuts, a new packet 

classification technique that combines decomposition and 
decision-tree techniques to improve storage and 
performance simultaneously. We develop a rule set 
decomposition algorithm based on the observation that most 
rules have at least one small field. This decomposition 
avoids the trouble of result aggregation suffered by 
traditional decomposition-based approaches. Instead, it 
yields subsets of rules amenable to very efficient cutting 
algorithms. To better exploit the characteristics of the 
subsets, a two-stage cutting algorithm is carried out. Being 
aware of the global characteristics of the subset under 
processing, the first stage employs a one-dimensional 
cutting algorithm called FiCuts. It either ends at the leaf 
nodes, or invokes an alternate multi-dimensional cutting 
algorithm when realizing that it no longer works efficiently.  

 

TABLE IV.       NUMBER OF MEMORY ACCESSES 

Binth=8 
Spfac=4 
T’=(16, 16) 

ACL FW IPC

1K 10K 100K 1K 10K 100K 1K 10K 100K

HyperCuts 24 24 22 35 27 N/A 26 31 26 
EffiCuts 41 41 36 95 76 117 92 110 80 
HybridCuts 24 29 29 31 17 42 25 40 31 
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Figure 8. The sizes of subsets 
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Figure 9. The sizes of trees 
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Figure 10. Potential of parallelization 
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Compared to the state-of-the-art EffiCuts algorithm, 
HybridCuts achieves significant speedup with the same 
level of reduction on memory consumption. Meanwhile, the 
very small and fixed number of decision-trees, which are 
balanced in size and height, enables a much easier 
implementation than EffiCuts in practice. Compared to 
ParaSplit, a recent work that also employs rule set 
partitioning and speeds up its algorithm with an FPGA 
implementation, our HybridCuts works better in terms of 
memory consumption and memory accesses, and is also 
amenable for FPGA acceleration. 
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