
HybridTSS: A Recursive Scheme Combining Coarse- and Fine-
Grained Tuples for Packet Classification

Yuxi Liu1,2, Yao Xin2, Wenjun Li3,2, Haoyu Song4, Ori Rottenstreich5,

Gaogang Xie6,7, Weichao Li2 and Yi Wang1,2

1Southern University of Science and Technology, China, 2Peng Cheng Laboratory, China,
3Harvard University, USA, 4Futurewei, USA, 5Technion, Israel, 6CNIC, CAS, China, 7UCAS, China

Outline

❖Background & Motivation

❖Proposed HybridTSS

❖Experimental Evaluation

❖Conclusion and Future Work

2

Outline

❖Background & Motivation

❖Proposed HybridTSS

❖Experimental Evaluation

❖Conclusion and Future Work

3

Review on Open vSwitch (OVS)

➢ Two paths in OVS: Slow path with OpenFlow tables + Fast path with cache tables

4

Figure 1. Open vSwitch architecture [1]

[1] Ben Pfaff and et al. The design and implementation of Open vSwitch. In USENIX NSDI 2015.

Packet Classification in Open vSwitch

➢ Key for OpenFlow rule table lookup and MegaFlow cache table lookup

5

Figure 2. Cache hierarchy in OVS [2]

[2] Nick Shelly and et al. Flow Caching for High Entropy Packet Fields. In ACM HotSDN 2014.

Slow path with OpenFlow rule tables

Fast path with Cache tables (EMC+MegaFlow)

6

Review on the Packet Classification Problem

e.g., Packet Pi

<0101,1010>

Rules Field X Field Y Action

R1 111* * action1

R2 110* * action2

R3 * 010* action3

R4 * 011* action4

R5 01** 10** action5

R6 * * action6

➢ Algorithmic table lookup → Geometric point location (~NP hard)

➢Metrics for multi-field packet classification
• Time: Throughput, Memory access, Construction time

• Space: Memory consumption

• Others: Updatable, More fields, Larger classifier, Power consumption, etc.

7

Review on Existing Solutions

[3] D.E.Taylor, “Survey and Taxonomy of Packet Classification Techniques,” ACM Computing Surveys, 37(3):238-275, 2005.

➢Well-known taxonomy from David E. Taylor[3]

➢ Packet classification in OVS: A variant of Tuple Space Search(TSS)

TSS can support fast rule updates

8

Review on TSS and State-of-the-art

➢Tuple Space Search(TSS)[4]
• Construct tuple based on prefix
• Use Cuckoo Hash to lookup rules

Rule Field A Field B TSS TupleMerge

𝑅1 000 111 (3, 3) (3, 3)

𝑅2 011 10* (3, 2)

(2, 2)𝑅3 01* 101 (2, 3)

𝑅4 01* 11* (2, 2)

𝑅5 1** 10* (1, 2)

(1, 0)𝑅6 110 *** (3, 0)

𝑅7 1** *** (1, 0)

𝑅8 *** *** (0, 0) (0, 0)

[4] Venkatachary Srinivasan and et al. Packet Classification using Tuple Space Search. In ACM SIGCOMM 1999.
[5] James Daly and et al. TupleMerge: Fast software packet processing for online packet classification.

IEEE/ACM Transactions on Networking 27, 4 (2019), 1417–1431.

➢Common weakness
• Too many tuples accessed in one query

➢Comparison
• TM effectively reduces the number of tuples
• TM has more hash collisions within each tuple
• Update may cause split tuple in TM
• Update need O(n) to locate the tuple

➢TupleMerge(TM)[5]
• Construct coarse-grained tuple
• Use Cuckoo Hash to lookup rules

Motivation

1. Fewer tuples, Higher throughput!

9

2. Global consideration, top-down structure

3. Recursive TSS Construction

From Coarse-Grained tuples to Fine-Grained tuples

Reinforcement Learning(RL) do well in this puzzle

Q1. How to reduce the number of tuples?

Q2. How to reduce the hash collisions?

Outline

❖Background & Motivation

❖Proposed HybridTSS

❖Experimental Evaluation

❖Conclusion and Future Work

10

11

Rule set
Reinforcement

learning

Linear search

Rule

subset

Hash
(rule field A key,

 rule field B key)

Rule

subset

Fine-grained tuples

Hash
(rule field C key,

 rule field D key)

Fine-grained tuples Fine-grained tuples

Hash
(rule field P key,

 rule field Q key)

Fine-grained tuples

TSS

TSS

TSS

Rule

subset

TSS

(Field A tuple len, Field B tuple len,)

(0, Field B tuple len,)

(Field A tuple len, 0,)

(0, 0,)

Tuple 1

Tuple 2

Tuple 3

Tuple n

1st level coarse-grained tuples

Subset 1

Subset 2

Subset i > binth 1

Subset s

Entry 1
Entry 2

Entry i

Entry s

1st level hashed subsets

(Field C tuple len, Field D tuple len,)

(0, Field D prefix len,)

(Field C prefix len, 0,)

(0, 0,)

Tuple 1

Tuple 2

Tuple 3

Tuple m

2nd level coarse-grained tuples

Subset 1

Subset 2

Subset j > binth 2

Subset t

Entry 1
Entry 2

Entry j

Entry t

2nd level hashed subsets

(Field P tuple len, Field Q tuple len,)

(0, Field Q prefix len,)

(Field P prefix len, 0,)

(0, 0,)

Tuple 1

Tuple 2

Tuple 3

Tuple l

Final level coarse-grained tuples

Subset 1

Subset 2

Subset k > binth r

Subset w

Entry 1
Entry 2

Entry k

Entry w

Final level hashed subsets

Reinforcement

learning

Reinforcement

learning

Framework of HybridTSS

➢ Key Idea: HybridTSS avoids tuple explosion in original TSS by recursively partitioning
rules into multi-layer tuples from top to bottom, aided by reinforcement learning(RL)

Figure 3: The framework of HybridTSS

Before RL Module…

12

➢Definition of terminal node and non-terminal node in the framework

✓ Non-Terminal Node
• #𝑟𝑢𝑙𝑒𝑠 > 𝑏𝑖𝑛𝑡ℎ
• Do next action/construct Tuple Space
• Consume more memory
• Exist better solution

✓ Terminal Node
• #𝑟𝑢𝑙𝑒𝑠 ≤ 𝑏𝑖𝑛𝑡ℎ
• Linear Search is better
• Almost no optimization

RL Target: More Terminal Leaf Node, Less Non-Terminal Leaf Node!

Rule set
Reinforcement

learning

Linear search

Rule

subset

Hash
(rule field A key,

 rule field B key)

Rule

subset

Fine-grained tuples

Hash
(rule field C key,

 rule field D key)

Fine-grained tuples Fine-grained tuples

Hash
(rule field P key,

 rule field Q key)

Fine-grained tuples

TSS

TSS

TSS

Rule

subset

TSS

(Field A tuple len, Field B tuple len,)

(0, Field B tuple len,)

(Field A tuple len, 0,)

(0, 0,)

Tuple 1

Tuple 2

Tuple 3

Tuple n

1st level coarse-grained tuples

Subset 1

Subset 2

Subset i > binth 1

Subset s

Entry 1
Entry 2

Entry i

Entry s

1st level hashed subsets

(Field C tuple len, Field D tuple len,)

(0, Field D prefix len,)

(Field C prefix len, 0,)

(0, 0,)

Tuple 1

Tuple 2

Tuple 3

Tuple m

2nd level coarse-grained tuples

Subset 1

Subset 2

Subset j > binth 2

Subset t

Entry 1
Entry 2

Entry j

Entry t

2nd level hashed subsets

(Field P tuple len, Field Q tuple len,)

(0, Field Q prefix len,)

(Field P prefix len, 0,)

(0, 0,)

Tuple 1

Tuple 2

Tuple 3

Tuple l

Final level coarse-grained tuples

Subset 1

Subset 2

Subset k > binth r

Subset w

Entry 1
Entry 2

Entry k

Entry w

Final level hashed subsets

Reinforcement

learning

Reinforcement

learning

13

➢Adapting RL for generating Tuple Space
• Defining Observation & Action Space

• Defining the appropriate Reward

• Reduce the hash collisions in coarse-grained tuples

RuleSet

Ruleset State

𝑟1 𝑇𝑢𝑝𝑙𝑒1

𝑟2 𝑇𝑢𝑝𝑙𝑒2

⋯ ⋯

𝑟𝑛 𝑇𝑢𝑝𝑙𝑒𝑛

Non-Terminal
Node

Terminal
Node

Action

𝐴𝑡

𝑅𝑡+1

𝑆𝑡+1

𝑅𝑡

RewardState

𝑆𝑡

RL Module in HybridTSS

14

➢Challenge 1: Defining Observation & Action Space

Ruleset State

𝑟0 𝑠0(0,0,0,0)

Level 1
action 𝑎1

Ruleset State

𝑟1 𝑠1(x1, 𝑦1, 0,0)

𝑟2 𝑠2(𝑥2, 0,0,0)

𝑟3 𝑠3(0, 𝑦3, 0,0)

𝑟4 𝑠4(0,0,0,0)

Src_IP,
Dst_IP

Level 2
action 𝑎2

Src_Port,
Dst_Port

⋯⋯

Each rule belongs to a unique Tuple Space.
Each tuple Space corresponds to a unique ruleset.

Different levels with different dimensions.

RL Challenges and Solutions

Observation Space

• Use Tuple Space to represent State

• Dynamic Programming

Action Space

• Select Fixed dimension in Each level

• Pruning

15

Reward =
-#𝑟𝑢𝑙𝑒𝑠

Ruleset State

𝑟0 𝑠0(0,0,0,0)

action 𝑎1

Ruleset State

𝑟1 𝑠1(x1, 𝑦1, 0,0)

𝑟2 𝑠2(𝑥2, 0,0,0)

𝑟3 𝑠3(0, 𝑦3, 0,0)

𝑟4 𝑠4(0,0,0,0)

hash ℎ1

action 𝑎2

Ruleset State

𝑟5 𝑠5(x1, 𝑦1, 𝑥5, 𝑦5)

𝑟6 𝑠6(x1, 𝑦1, 𝑥6, 0)

𝑟7 𝑠7(x1, 𝑦1, 0, 𝑦7)

𝑟8 𝑠8(x1, 𝑦1, 0,0)

TSS

hash ℎn

action 𝑎𝑛
⋯

➢Challenge 2: Determine the reward
• Non-Terminal leaf Node may cause multiple hashes

• Using Bellman expectation equation to update Q-Table

𝑄π = 𝐸[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯ |𝑠𝑡, 𝑎𝑡]

Target: Minimize the total number of rules
in Non-Terminal leaf Node.

Non-Terminal
Node

Terminal
Node

RL Challenges and Solutions

16

Hash(src_addr & (2𝑥1 − 1),
Dest_addr & (2𝑦1 − 1))

Ruleset State

𝑟0 𝑠0(0,0,0,0)

action 𝑎1

Ruleset State

𝑟1 𝑠1(x1, 𝑦1, 0,0)

𝑟2 𝑠2(𝑥2, 0,0,0)

𝑟3 𝑠3(0, 𝑦3, 0,0)

𝑟4 𝑠4(0,0,0,0)

Terminal
Node

Non-Terminal
Node

Terminal
Node

Non-Terminal
Node

⋯

Next action

⋯

➢Challenge 3: Reduce the Hash Collisions
Recursive TSS Construction

• Make full use of information after each action

• Hash to separate rules into subset

Next action

Non-Terminal
Node

Terminal
Node

RL Challenges and Solutions

17

A Working Example of HybridTSS

Rule set

Hash
(src_addr & FF.80.0.0,

 dest_addr & FE.0.0.0)
R1

R2

Entry 1

Entry 2

1
st

level hashed subset1

R4

R5

Entry 1

Entry 2

1
st

level hashed subset2

R7, R9, R10Entry 3

Hash
(src_addr & 0.0.0.0,

 dest_addr & FC.0.0.0)

R3

R6

Entry 1

Entry 2

1
st

level hashed subset3

R8Entry 3

Hash
(src_addr & FE.0.0.0,

 dest_addr & 0.0.0.0)

Fine-grained tuples

Reinforcement

learning

(src addr tuple len,

dest addr tuple len)

(0, 6)

(7, 0)

(0, 0)

Tuple

2

3

4

1st level coarse-grained tuples

(9, 7)1

rules

R1, R2

R4,R5,R7,R9,R10

R3, R6, R8

R11, R12

Reinforcement

learning

(src port tuple len,

dest port tuple len)

(0, 0)

Tuple

2

2
nd

level coarse-grained tuples

(16, 0)1

rules

R7

R9, R10

R7Entry 1

2
nd

level hashed subset1

Hash
(src_port & FFFF,

 dest_addr & 0)

R9, R10Entry 1

2
nd

level hashed subset2

Hash
(src_port & 0,

 dest_addr & 0)

(src addr mask,

dest addr mask)

(1, 1)

Tuple

2

(1, 3)1

rules

R11

R12

Fine-grained tuples

(src addr mask,

dest addr mask)

(0, 7)

Tuple

2

(3, 6)1

rules

R9

R10

Figure 4: A working example of HybridTSS, with the binths = 1 and the MAX recursion level = 2

ID Src_addr Dst_addr Src_port Dst_port

𝑅1 228.128.0.0/9 124.0.0/7 119:119 0:65535

𝑅2 223.0.0.0/9 38.0.0.0/7 20:20 1024:65535

𝑅3 175.0.0.0/8 0.0.0.0/1 53:53 0:65535

𝑅4 128.0.0.0/1 37.0.0.0/8 53:53 1024:65535

𝑅5 0.0.0.0/2 225.0.0.0/9 123:123 0:65535

𝑅6 123.0.0.0/8 128.0.0.0/1 0:65535 0:65535

𝑅7 0.0.0.0/1 255.0.0.0/8 25:25 0:65535

𝑅8 246.0.0.0/7 0.0.0.0/0 0:65535 53:53

𝑅9 160.0.0.0/3 252.0.0.0/6 0:65535 0:65535

𝑅10 0.0.0.0/0 254.0.0.0/7 0:65535 0:65535

𝑅11 0.0.0.0/1 224.0.0.0/3 0:65535 23:23

𝑅12 128.0.0.0/1 128.0.0.0/1 0:65535 0:65535

Table 1. Example rule set with four IPv4 fields

PS: Range port fields are simply transformed to Longest Common
Prefixes (LCP) [6] for RL in this example

[6] Yeim-Kuan Chang. 2006. A 2-level TCAM architecture for ranges.
IEEE Transactions on Computers. 55, 12 (2006), 1614–1629.

Outline

❖Background & Motivation

❖Proposed HybridTSS

❖Experimental Evaluation

❖Conclusion and Future Work

18

19

➢ Rule Sets
• ClassBench[7]: Generate ACL & FW & IPC based on 12 seed files, with 1K & 10K & 100K

➢ Compared with
• Classification performance: PSTSS[1], TupleMerge[5], CutTSS[8], NuevoMatch[9]
• Update performance: PSTSS, TupleMerge, CutTSS

➢ The source code of this paper can be downloaded from
• http://www.wenjunli.com/HybridTSS
• https://www.github.com/wenjunpaper/HybridTSS

[7] David E Taylor and Jonathan S Turner. 2007. ClassBench: A packet classification benchmark. IEEE/ACM Transactions
on Networking 15, 3 (2007), 499–511.
[8] Wenjun Li and et al. 2020. Tuple Space Assisted Packet Classification with High Performance on Both Search and
Update. IEEE Journal on Selected Areas in Communications 38, 7 (2020), 1555–1569.
[9] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. A Computational Approach to Packet Classification. In
ACM SIGCOMM, 2020.

Experimental Evaluation

http://www.wenjunli.com/HybridTSS
https://www.github.com/wenjunpaper/HybridTSS

➢ Average classification time of one packet on three types of rule sets with different sizes

• Achieve 7.76 ×, 10.09 ×, 8.03 × speed up in terms of classification time compare to PSTSS

• Achieve 1.92 ×, 1.54 ×, 1.82 ×, 1.81 × speed up compare to CutTSS, TupleMerge,
NuevoMatch(TM), NuevoMatch(CS)

20

Classification Performance

➢ Average update time of one rule on three types of rule sets with different sizes

• Achieve 0.96 ×, 1.45 ×, 1.44 × speed up compare to PSTSS, CutTSS, TupleMerge

21

Update Performance

Outline

❖Background & Motivation

❖Proposed HybridTSS

❖Experimental Evaluation

❖Conclusion and Future Work

22

Conclusion & Future Work

• Summary HybridTSS
- Adopt RL method to build a small number of coarse-grained tuples
- From coarse-grained tuple hashed into subset
- Achieve higher throughput and fast updates

23

• Future Work
- Adopt new ML/RL approaches for globally balanced tuple partitioning
- Combine packet classification with flow cache
- Integrated to OVS and offload to FPGA

Thanks
Q&A

