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Review on Open vSwitch (OVS)

➢ Two paths in OVS: Slow path with OpenFlow tables + Fast path with cache tables
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Figure 1. Open vSwitch architecture [1]

[1] Ben Pfaff and et al. The design and implementation of Open vSwitch. In USENIX NSDI 2015.



Packet Classification in Open vSwitch

➢ Key for OpenFlow rule table lookup and MegaFlow cache table lookup
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Figure 2. Cache hierarchy in OVS [2]

[2] Nick Shelly and et al. Flow Caching for High Entropy Packet Fields. In ACM HotSDN 2014.

Slow path with OpenFlow rule tables

Fast path with Cache tables (EMC+MegaFlow)



6

Review on the Packet Classification Problem

e.g., Packet Pi

<0101,1010>

Rules Field X Field Y Action

R1 111* * action1

R2 110* * action2

R3 * 010* action3

R4 * 011* action4

R5 01** 10** action5

R6 * * action6

➢ Algorithmic table lookup → Geometric point location (~NP hard)

➢Metrics for multi-field packet classification
• Time: Throughput, Memory access, Construction time

• Space: Memory consumption

• Others: Updatable, More fields, Larger classifier, Power consumption, etc.
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Review on Existing Solutions

[3] D.E.Taylor, “Survey and Taxonomy of Packet Classification Techniques,” ACM Computing Surveys, 37(3):238-275, 2005.

➢Well-known taxonomy from David E. Taylor[3]

➢ Packet classification in OVS: A variant of Tuple Space Search(TSS)

TSS can support fast rule updates
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Review on TSS and State-of-the-art

➢Tuple Space Search(TSS)[4]
• Construct tuple based on prefix
• Use Cuckoo Hash to lookup rules

Rule Field A Field B TSS TupleMerge

𝑅1 000 111 (3, 3) (3, 3)

𝑅2 011 10* (3, 2)

(2, 2)𝑅3 01* 101 (2, 3)

𝑅4 01* 11* (2, 2)

𝑅5 1** 10* (1, 2)

(1, 0)𝑅6 110 *** (3, 0)

𝑅7 1** *** (1, 0)

𝑅8 *** *** (0, 0) (0, 0)

[4] Venkatachary Srinivasan and et al. Packet Classification using Tuple Space Search. In ACM SIGCOMM 1999.
[5] James Daly and et al. TupleMerge: Fast software packet processing for online packet classification.

IEEE/ACM Transactions on Networking 27, 4 (2019), 1417–1431. 

➢Common weakness
• Too many tuples accessed in one query

➢Comparison
• TM effectively reduces the number of tuples
• TM has more hash collisions within each tuple
• Update may cause split tuple in TM
• Update need O(n) to locate the tuple

➢TupleMerge(TM)[5]
• Construct coarse-grained tuple  
• Use Cuckoo Hash to lookup rules



Motivation

1. Fewer tuples, Higher throughput!
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2. Global consideration, top-down structure

3. Recursive TSS Construction

From Coarse-Grained tuples to Fine-Grained tuples

Reinforcement Learning(RL) do well in this puzzle

Q1. How to reduce the number of tuples?

Q2. How to reduce the hash collisions?
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➢ Key Idea: HybridTSS avoids tuple explosion in original TSS by recursively partitioning 
rules into multi-layer tuples from top to bottom, aided by reinforcement learning(RL)

Figure 3: The framework of HybridTSS



Before RL Module… 
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➢Definition of terminal node and non-terminal node in the framework

✓ Non-Terminal Node
• #𝑟𝑢𝑙𝑒𝑠 > 𝑏𝑖𝑛𝑡ℎ
• Do next action/construct Tuple Space
• Consume more memory
• Exist better solution

✓ Terminal Node
• #𝑟𝑢𝑙𝑒𝑠 ≤ 𝑏𝑖𝑛𝑡ℎ
• Linear Search is better
• Almost no optimization

RL Target: More Terminal Leaf Node, Less Non-Terminal Leaf Node!
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➢Adapting RL for generating Tuple Space
• Defining Observation & Action Space

• Defining the appropriate Reward

• Reduce the hash collisions in coarse-grained tuples

RuleSet

Ruleset State

𝑟1 𝑇𝑢𝑝𝑙𝑒1

𝑟2 𝑇𝑢𝑝𝑙𝑒2

⋯ ⋯

𝑟𝑛 𝑇𝑢𝑝𝑙𝑒𝑛

Non-Terminal 
Node

Terminal 
Node

Action

𝐴𝑡

𝑅𝑡+1

𝑆𝑡+1

𝑅𝑡

RewardState

𝑆𝑡

RL Module in HybridTSS
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➢Challenge 1: Defining Observation & Action Space

Ruleset State

𝑟0 𝑠0(0,0,0,0)

Level 1
action 𝑎1

Ruleset State

𝑟1 𝑠1(x1, 𝑦1, 0,0)

𝑟2 𝑠2(𝑥2, 0,0,0)

𝑟3 𝑠3(0, 𝑦3, 0,0)

𝑟4 𝑠4(0,0,0,0)

Src_IP, 
Dst_IP

Level 2
action 𝑎2

Src_Port, 
Dst_Port

⋯⋯

Each rule belongs to a unique Tuple Space.
Each tuple Space corresponds to a unique ruleset.

Different levels with different dimensions.

RL Challenges and Solutions

Observation Space

• Use Tuple Space to represent State

• Dynamic Programming

Action Space

• Select Fixed dimension in Each level

• Pruning
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Reward = 
-#𝑟𝑢𝑙𝑒𝑠

Ruleset State

𝑟0 𝑠0(0,0,0,0)

action 𝑎1

Ruleset State

𝑟1 𝑠1(x1, 𝑦1, 0,0)

𝑟2 𝑠2(𝑥2, 0,0,0)

𝑟3 𝑠3(0, 𝑦3, 0,0)

𝑟4 𝑠4(0,0,0,0)

hash ℎ1
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Ruleset State

𝑟5 𝑠5(x1, 𝑦1, 𝑥5, 𝑦5)

𝑟6 𝑠6(x1, 𝑦1, 𝑥6, 0)

𝑟7 𝑠7(x1, 𝑦1, 0, 𝑦7)

𝑟8 𝑠8(x1, 𝑦1, 0,0)

TSS

hash ℎn

action 𝑎𝑛
⋯

➢Challenge 2: Determine the reward
• Non-Terminal leaf Node may cause multiple hashes

• Using Bellman expectation equation to update Q-Table

𝑄π = 𝐸[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯ |𝑠𝑡, 𝑎𝑡]

Target: Minimize the total number of rules 
in Non-Terminal leaf Node.

Non-Terminal 
Node

Terminal 
Node

RL Challenges and Solutions
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Hash(src_addr & (2𝑥1 − 1), 
Dest_addr & (2𝑦1 − 1))

Ruleset State
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⋯
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⋯

➢Challenge 3: Reduce the Hash Collisions
Recursive TSS Construction

• Make full use of information after each action

• Hash to separate rules into subset

Next action

Non-Terminal 
Node

Terminal 
Node

RL Challenges and Solutions
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A Working Example of HybridTSS
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Figure 4: A working example of HybridTSS, with the binths = 1 and the MAX recursion level = 2

ID Src_addr Dst_addr Src_port Dst_port

𝑅1 228.128.0.0/9 124.0.0/7 119:119 0:65535

𝑅2 223.0.0.0/9 38.0.0.0/7 20:20 1024:65535

𝑅3 175.0.0.0/8 0.0.0.0/1 53:53 0:65535

𝑅4 128.0.0.0/1 37.0.0.0/8 53:53 1024:65535

𝑅5 0.0.0.0/2 225.0.0.0/9 123:123 0:65535

𝑅6 123.0.0.0/8 128.0.0.0/1 0:65535 0:65535

𝑅7 0.0.0.0/1 255.0.0.0/8 25:25 0:65535

𝑅8 246.0.0.0/7 0.0.0.0/0 0:65535 53:53

𝑅9 160.0.0.0/3 252.0.0.0/6 0:65535 0:65535

𝑅10 0.0.0.0/0 254.0.0.0/7 0:65535 0:65535

𝑅11 0.0.0.0/1 224.0.0.0/3 0:65535 23:23

𝑅12 128.0.0.0/1 128.0.0.0/1 0:65535 0:65535

Table 1. Example rule set with four IPv4 fields

PS: Range port fields are simply transformed to Longest Common 
Prefixes (LCP) [6] for RL in this example

[6] Yeim-Kuan Chang. 2006. A 2-level TCAM architecture for ranges.
IEEE Transactions on Computers. 55, 12 (2006), 1614–1629.
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➢ Rule Sets
• ClassBench[7]: Generate ACL & FW & IPC based on 12 seed files, with 1K & 10K & 100K

➢ Compared with
• Classification performance: PSTSS[1], TupleMerge[5], CutTSS[8], NuevoMatch[9]
• Update performance: PSTSS, TupleMerge, CutTSS

➢ The source code of this paper can be downloaded from
• http://www.wenjunli.com/HybridTSS
• https://www.github.com/wenjunpaper/HybridTSS

[7] David E Taylor and Jonathan S Turner. 2007. ClassBench: A packet classification benchmark. IEEE/ACM Transactions
on Networking 15, 3 (2007), 499–511.
[8] Wenjun Li and et al. 2020. Tuple Space Assisted Packet Classification with High Performance on Both Search and
Update. IEEE Journal on Selected Areas in Communications 38, 7 (2020), 1555–1569.
[9] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. A Computational Approach to Packet Classification. In
ACM SIGCOMM, 2020.

Experimental Evaluation

http://www.wenjunli.com/HybridTSS
https://www.github.com/wenjunpaper/HybridTSS


➢ Average classification time of one packet on three types of rule sets with different sizes

• Achieve 7.76 ×, 10.09 ×, 8.03 × speed up in terms of classification time compare to PSTSS

• Achieve 1.92 ×, 1.54 ×, 1.82 ×, 1.81 × speed up compare to CutTSS, TupleMerge, 
NuevoMatch(TM), NuevoMatch(CS)

20

Classification Performance



➢ Average update time of one rule on three types of rule sets with different sizes

• Achieve  0.96 ×, 1.45 ×, 1.44 × speed up compare to PSTSS, CutTSS, TupleMerge

21

Update Performance
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Conclusion & Future Work

• Summary HybridTSS
- Adopt RL method to build a small number of coarse-grained tuples 
- From coarse-grained tuple hashed into subset
- Achieve higher throughput and fast updates

23

• Future Work
- Adopt new ML/RL approaches for globally balanced tuple partitioning
- Combine packet classification with flow cache
- Integrated to OVS and offload to FPGA 
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