
HybridTSS: A Recursive Scheme Combining Coarse-
and Fine- Grained Tuples for Packet Classification
Yuxi Liu§†∗, Yao Xin†∗, Wenjun Li★†(B: wenjunli@seas.harvard.edu), Haoyu Song‡,

Ori Rottenstreich¶, Gaogang Xie♦△, Weichao Li†, Yi Wang§†
§Institute of Future Networks in SUSTech †Peng Cheng Laboratory ★Harvard University ‡Futurewei
¶Technion ♦CNIC of the Chinese Academy of Sciences △University of Chinese Academy of Sciences

ABSTRACT
The popular OpenFlow virtual switch Open vSwitch (OVS)
uses a variant of Tuple Space Search (TSS) for packet clas-
sification. Although it is easy for rule updates, the lookup
performance is poor. By introducing partial trees into TSS,
the recently proposed CutTSS improves the lookup perfor-
mance of TSS. However, it is challenging to replace TSS in
OVS for two reasons: (1) the hand-tuned partitioning heuris-
tics are rule-set dependent; (2) the complex and irregular data
structures make it difficult to be integrated and maintained
in real systems. To address these issues, we propose Hy-
bridTSS, a recursive TSS scheme for fast packet classification
in OVS, which exploits three novel ideas: (1) the recursive
partitioning based on reinforcement learning balances global
rule partitions with low training complexity; (2) a hybrid
TSS scheme combining coarse-grained and fine-grained tu-
ples suppresses tuple explosion in TSS; (3) a heterogeneous
search algorithm consisting of TSS and linear search adapts
to characteristics of rules at different scales for fast lookups.
Using ClassBench, we show that, while immune from the
main drawbacks of CutTSS, HybridTSS retains the update
performance of TSS, and achieves almost an order of mag-
nitude higher lookup performance than TSS, making it an
ideal packet classification algorithm for OVS.

∗Yuxi Liu and Yao Xin contributed equally to this paper, and they conducted
this work in the Peng Cheng Laboratory under the guidance of correspond-
ing authors Wenjun Li and Yi Wang. Yi Wang is also with Heyuan Bay Area
Digital Economy Technology Innovation Center. The source code of this pa-
per can be downloaded from the website (http://wenjunli.com/HybridTSS)
and the GitHub (https://github.com/wenjunpaper/HybridTSS).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNet 2022, July 1–2, 2022, Fuzhou, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9748-3/22/07. . . $15.00
https://doi.org/10.1145/3542637.3542644

CCS CONCEPTS
• Networks → Packet classification;

KEYWORDS
SDN, Open vSwitch, packet classification, machine learning

ACM Reference Format:
Yuxi Liu, Yao Xin, Wenjun Li, Haoyu Song, Ori Rottenstreich, Gao-
gang Xie, Weichao Li, and Yi Wang. 2022. HybridTSS: A Recursive
Scheme Combining Coarse- and Fine- Grained Tuples for Packet
Classification. In 6th Asia-Pacific Workshop on Networking (APNet
2022), July 1–2, 2022, Fuzhou, China. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3542637.3542644

1 INTRODUCTION
Backed by software-defined networking (SDN), software
virtual switches enable a wide spectrum of non-traditional
network functionalities, such as flexible resource partition-
ing and real-time migration. With the development of net-
work function virtualization (NFV) and cloud service, vir-
tual switches are becoming an important part of virtualized
network infrastructures. The popular Open vSwitch (OVS)
enforces forwarding policies with OpenFlow table lookups,
which is essentially a multi-field packet classification prob-
lem [27]. Compared with the packet classification in con-
ventional switches and routers [6], the packet classification
in OpenFlow switches faces some new challenges such as
higher rule dimensions and faster rule update rates [17],
making this open problem more challenging than ever.
As a widely studied bottleneck, packet classification has

attracted extensive research attention, and many algorithmic
approaches have been proposed in the past two decades [13,
38]. Among them, decision tree and Tuple Space Search (TSS)
are two major approaches. The well-researched decision tree
based schemes [14, 23, 24, 29, 41, 46] are more promising
to achieve high search speed, but the notorious rule dupli-
cation problem inflates the memory footprint and hinders
the support for fast updates. Moreover, the traditional de-
cision tree based schemes rely on hand-tuned heuristics to
construct the tree, making them difficult to adapt to general
rule sets with different characteristics and arbitrary number

https://doi.org/10.1145/3542637.3542644
https://doi.org/10.1145/3542637.3542644

APNet 2022, July 1–2, 2022, Fuzhou, China Yuxi Liu, et al.

Table 1: Example rule set with four IPv4 header fields
id priority src_addr dest_addr src_port dest_port action
𝑅1 12 228.128.0.0/9 124.0.0.0/7 119:119 0:65535 action1
𝑅2 11 223.0.0.0/9 38.0.0.0/7 20:20 1024:65535 action2
𝑅3 10 175.0.0.0/8 0.0.0.0/1 53:53 0:65535 action3
𝑅4 9 128.0.0.0/1 37.0.0.0/8 53:53 1024:65535 action4
𝑅5 8 0.0.0.0/2 225.0.0.0/8 123:123 0:65535 action5
𝑅6 7 123.0.0.0/8 128.0.0.0/1 0:65535 0:65535 action6
𝑅7 6 0.0.0.0/1 255.0.0.0/8 25:25 0:65535 action7
𝑅8 5 246.0.0.0/7 0.0.0.0/0 0:65535 53:53 action8
𝑅9 4 160.0.0.0/3 252.0.0.0/6 0:65535 0:65535 action9
𝑅10 3 0.0.0.0/0 254.0.0.0/7 0:65535 0:65535 action10
𝑅11 2 0.0.0.0/1 224.0.0.0/3 0:65535 23:23 action11
𝑅12 1 128.0.0.0/1 128.0.0.0/1 0:65535 0:65535 action12

of fields. To address this issue, machine learning (ML) has re-
cently been introduced into the packet classification problem
to optimize the classifier [16], such as NeuroCuts [25] and
NuevoMatch [30, 31]. Nevertheless, real-time rule update is
still facing challenges in these decision trees and ML-based
methods.
As a result, OVS implements a variant of TSS [28] other

than decision trees for its flow table lookups. The primary
reason is its good support for rule updates. However, its
lookup performance is poor since all the partitioned tuples
need to be exhaustively searched. TupleMerge [7] improves
TSS by merging tuples with similar characteristics, but its
bottom-up method restricts its ability of merging tuples and
might cause the performance degradation for large-scale
rule sets. The recently proposed CutTSS [22] combines the
advantages of both decision tree and TSS to acheive high
performance on both table search and rule update. However,
it is challenging to replace TSS with CutTSS in OVS for
two reasons: (1) the partitioning result based on hand-tuned
heuristics highly depends on rule set characteristics; (2) the
complex and irregular data structures make its integration
and maintenance in real system difficult.
In this paper, we propose a recursive tuple space search

scheme, HybridTSS, aided by reinforcement learning (RL)
for fast packet classification in OVS. HybridTSS recursively
partitions rules into multi-level subsets from top to bottom,
and the classifier in each level (or rollout) consists of hybrid
TSS structures: coarse-grained tuples, middle-layer hash ta-
bles, and fine-grained tuples. A heterogeneous algorithm
consisting of TSS and linear search is utilized for search in
terminal/bottom subsets. More specifically, in the first stage,
reinforcement learning is used to learn optimal field prefixes
of the rules to partition a few rule subsets. It enables efficient
rule set partitioning without the trouble of rule replication
and makes the rule distribution in hash tables more balanced.
Instead of implementing a classifier in NuevoMatch, ma-
chine learning method in our approach is not coupled to
the subsequent classification architecture, so that it can well
support incremental rule updates. Partitioned rule subsets
correspond to coarse-grained tuple spaces grouped by dif-
ferent prefix combinations from selected fields in current

Table 2: Classifier based on TSS, PSTSS & TupleMerge
PSTSS [28] TupleMerge [7]

tuple
priority

TSS [36] original
tuple

merged
tuple rule subsettuple rule subset

12 (9, 7) 𝑅1, 𝑅2 (9, 7) (9, 7) 𝑅1, 𝑅2
10 (8, 1) 𝑅3, 𝑅6 (8, 1) (7, 0) 𝑅3, 𝑅6, 𝑅89 (1, 8) 𝑅4, 𝑅7 (7, 0)
8 (2, 8) 𝑅5 (1, 8)

(0, 7) 𝑅4, 𝑅5,
𝑅7, 𝑅10

5 (7, 0) 𝑅8 (2, 8)
4 (3, 6) 𝑅9 (0, 7)
3 (0, 7) 𝑅10 (3, 6) (3, 6) 𝑅9
2 (1, 3) 𝑅11 (1, 3) (1, 1) 𝑅11, 𝑅121 (1, 1) 𝑅12 (1, 1)

level. With the valid bits dertermined by tuple mask as key,
hash table is built for each subset in the second stage. If the
number of collided rules in an entry exceeds a pre-defined
threshold, those rules would be processed in the next level
of classifier establishment. This recursive process continues
until all the rules are settled. In the third stage, heteroge-
neous search methods are applied on the terminal subsets
with fine-grained TSS and linear search.

Using ClassBench [40], we compare HybridTSS with the
other TSS-based approaches. Experiment results show that
HybridTSS has similar update performance to thewell-known
PSTSS [28], while on average achieving 8.63x speed-up on
classification speed over PSTSS. HybridTSS also outperforms
TupleMerge and CutTSS, two state-of-the-art TSS schemes,
with an average of 1.54x and 1.92x speed-up on classification
speed respectively, and with an average of 1.44x and 1.45x
speed-up on update time respectively. Moreover, HybridTSS
has similar data structures as the TSS in OVS, making it
easier to be integrated and maintained in real systems.
The rest of the paper is organized as follows. We first

summarize the backgroud and related work in Section 2. We
then present the technical details of the proposed HybridTSS
in Section 3 and provide experimental results in Section 4.
Finally, we conclude this work and give our future work in
Section 5.

2 BACKGROUD AND RELATEDWORK
2.1 The Packet Classification Problem
The purpose of network packet classification is to enable
differentiated packet processing based on a classifier that
contains a set of predefined rules with priority. Each rule
consists of a set of fields in exact value, prefix, or range rep-
resentations, and the action to be taken when being matched.
Table 1 shows a rule set defined over four IPv4 header fields.
As an extensively studied problem [38], many algorithmic
approaches had been proposed in last two decades, such
as decision tree [1, 4, 5, 8, 9, 12, 14, 15, 21, 23, 24, 29, 32–
34, 41, 43, 46], decomposition [2, 10, 11, 18, 19, 37, 39, 44, 45],
and TSS-based schemes [7, 22, 26, 28, 35, 36, 47]. Next, we
briefly describe some related TSS solutions pertaining to our
proposed scheme.

HybridTSS: A Recursive Scheme Combining Coarse- et al. APNet 2022, July 1–2, 2022, Fuzhou, China

Rule set
Reinforcement

learning

Linear search

Rule

subset

Hash
(rule field A key,

 rule field B key)

Rule

subset

Fine-grained tuples

Hash
(rule field C key,

 rule field D key)

Fine-grained tuples Fine-grained tuples

Hash
(rule field P key,

 rule field Q key)

Fine-grained tuples

TSS

TSS TSS

Rule

subset

TSS

(Field A tuple len, Field B tuple len,)

(0, Field B tuple len,)

(Field A tuple len, 0,)

(0, 0,)

Tuple 1

Tuple 2

Tuple 3

Tuple n

1
st

level coarse-grained tuples

Subset 1

Subset 2

Subset i > binth 1

Subset s

Entry 1
Entry 2

Entry i

Entry s

1
st

level hashed subsets

(Field C tuple len, Field D tuple len,)

(0, Field D prefix len,)

(Field C prefix len, 0,)

(0, 0,)

Tuple 1

Tuple 2

Tuple 3

Tuple m

2
nd

level coarse-grained tuples

Subset 1

Subset 2

Subset j > binth 2

Subset t

Entry 1
Entry 2

Entry j

Entry t

2
nd

level hashed subsets

(Field P tuple len, Field Q tuple len,)

(0, Field Q prefix len,)

(Field P prefix len, 0,)

(0, 0,)

Tuple 1

Tuple 2

Tuple 3

Tuple l

Final

level coarse-grained tuples

Subset 1

Subset 2

Subset k > binth r

Subset w

Entry 1
Entry 2

Entry k

Entry w

Final

level hashed subsets

Reinforcement

learning

Reinforcement

learning

Figure 1: The framework of HybridTSS, the threshold parameter binths and MAX recursion level are configurable

2.2 Tuple Space based Solutions
In the original TSS scheme [36], rules are partitioned into a
set of tuple spaces (tuple for short) based on prefix lengths,
so that the rules mapped to the same tuple can be searched
with a hash table. The left part of Table 2 shows an exam-
ple of TSS constructed based on two IP addresses with the
rules in Table 1. As each rule is stored only once, each rule
can be inserted/deleted from the hash table in amortized
one memory access, resulting in a high update performance.
However, in order to find the best matching rule for each
packet, all these partitioned hash tables have to be searched,
resulting in a low lookup performance. As an improvement,
Priority Sorting Tuple Space Search (PSTSS) scheme [28] re-
duces the average number of table accesses by introducing a
pre-computed priority for each tuple and ordering the tuples
according to the highest priority of the rules associated with
each tuple, as shown in the leftmost column of Table 2. Thus,
each search can terminate as soon as a match is found and
the matched rule’s priority is higher than the priority of the
next tuple. Unfortunately, PSTSS has the same worst-case
performance as the original TSS.
TupleMerge [7], a recently proposed tuple space scheme,

improves upon TSS by relaxing the restrictions on the rules
that can be placed in the same tuple. Based on the observa-
tion that many rules have similar but non-identical tuples
must be placed in separate tables in TSS, TupleMerge allows
these rules to be placed into a same table, reducing the num-
ber of tables required and leading to faster classification. In
the algorithm, the maximum common tuple is found and
some bits are ignored for merging similar tuples. The right
part of Table 2 shows the example of TupleMerge. However,
with more tuples randomly merged, its lookup performance
may be affected due to hash collisions. Thus, this bottom-up
heuristic approach restricts its ability of grouping rules.

CutTSS [22], a state-of-the-art tuple space approach, adopts
a top-down TSS construction method, aided by decision trees

for fast lookups. In CutTSS, rules are first divided into sev-
eral subsets based on a few distinct field, and then decision
trees assisted by TSS are built for rule subsets (except the
final subset) by cutting on small fields. For each lookup or
update, the packet or rule will first traverse the trees for
the specific terminal operation node. Thus, by exploiting
the benefits of decision tree and TSS adaptively, CutTSS not
only avoids rule replications, but also supports fast lookups.
However, it is challenging to apply CutTSS in OVS due to
the aforementioned two reasons.

3 ALGORITHM DESIGN
3.1 Framework of HybridTSS
As shown in Figure 1, the framework of HybridTSS exploits
RL to recursively construct a hybrid TSS structure: from
coarse-grained to fine-grained tuple spaces. Instead of the
bottom-up tuple merging in TupleMerge, HybridTSS adopts
a top-down TSS building method. It first uses RL to learn
a set of parameters to partition rules without replication
into several coarse-grained tuples. Then, the indivisible rules
under the current configuration, which are named impart-
ible rules, are allocated to the final tuple labeled (0, 0, ...) in
Figure 1. The rule subsets in each tuple other than (0, 0, ...)
are hashed into separated tables. For entries with few rules
after hashing, a linear search is efficient for rule searching.
Otherwise, the rules causing more collisions than the thresh-
old parameter binth are assigned for the next-level classifier
construction in another RL rollout. In a new rollout, the un-
selected rule fields are explored to separate the rules into
coarse-grained tuples. This process continues until either
the maximum recursion level is acheived or no threshold-
exceeding rules are left. A heterogeneous search approach
is finally applied to different terminals of rule subsets. The
impartible rules and the threshold-exceeding rules in the
final-level hash tables are searched through TSS, while the
rules in the other terminals are linearly searched.

APNet 2022, July 1–2, 2022, Fuzhou, China Yuxi Liu, et al.

3.2 Top-down TSS Partitioning with RL
The TSS partitioning generates coarse-grained tuples with
two goals: (1) the collided rule number in each hashed sub-
set is minimized to facilitate linear search; (2) the number
of impartible rules in the last coarse tuple of current level
is minimized. The coarse-grained partitioning is based on
customized prefix length which is less or equal to original
rule prefix length, and this length is called coarse-grained
tuple length (tuple length for short) in this paper. The choice
of tuple length tends to be random rather than empirical,
which involves a huge amount of trial-and-error work.

By observation, our TSS partitioning can be classified as
an unsupervised autonomous decision-making problem, in
which decision maker needs to take actions in a trial-and-
error manner and optimize the policy (or strategy) according
to the feedback. This scenario is very suitable for reinforce-
ment learning. Specifically, according to the state of the en-
vironment, the agent outputs an action through a strategy
function on the environment, then the environment gives
the agent a reward and transfers to the next state. Finally,
an efficient strategy is found so that the agent can obtain as
many rewards from the environment as possible.

Through the mapping from subset partitioning problem to
RL, we have established a RL framework to perform coarse-
grained tuple partitioning from top to bottom. After parti-
tioning, the learning process has little coupling with the sub-
sequent classification architecture, which means the lookups
and rule updates no longer require the participation of RL,
unless the entire structure is required to be reconstructed.

In this work, the coarse-grained TSS partition problem is
fit to a typical RL system: the state 𝑠 corresponds to the tuple
length, and the environment corresponds to the constructed
classifier in the current level which consists of coarse-grained
tuples each associated with a hash table or fine-grained tu-
ples. The action 𝑎 is to incrementally adjust possible tuple
lengths of selected fields which are used to divide the rule
set and construct the current-level hybrid TSS classifier. For
example, assuming the tuple lengths for field combination
(𝐴, 𝐵) include (𝑙𝑒𝑛1𝐴, 𝑙𝑒𝑛1𝐵), (𝑙𝑒𝑛2𝐴, 0), (0, 𝑙𝑒𝑛2𝐵) in current
state, the possible actions include (𝑙𝑒𝑛1𝐴+1, 𝑙𝑒𝑛1𝐵), (𝑙𝑒𝑛1𝐴−
1, 𝑙𝑒𝑛1𝐵), (𝑙𝑒𝑛1𝐴, 𝑙𝑒𝑛1𝐵 + 1), (𝑙𝑒𝑛1𝐴, 𝑙𝑒𝑛1𝐵 − 1), (𝑙𝑒𝑛2𝐴 + 1, 0),
(𝑙𝑒𝑛2𝐴 − 1, 0), (0, 𝑙𝑒𝑛2𝐵 + 1), (0, 𝑙𝑒𝑛2𝐵 − 1) and unchanged
(𝑙𝑒𝑛1𝐴, 𝑙𝑒𝑛1𝐵), (𝑙𝑒𝑛2𝐴, 0), (0, 𝑙𝑒𝑛2𝐵). When the tuple length
in a coarse tuple changes, the other tuple values remain un-
changed. The keys for hashing are the prefixes defined by
tuple lengths in selected fields. Each round of learning would
generate a negative reward of 𝑓 (𝑐1 ·𝑀+𝑐2 ·𝑁) through the sta-
tistics of classifier, where𝑀 is the number of impartable rules
and 𝑁 is the summation of collided rules in the threshold-
exceeding entries in the hash tables, 𝑐1 and 𝑐2 are weight
coefficients for above mentioned two numbers, and 𝑓 (·) is

the scaling function. The reward is fed back to agent to train
the policy 𝜋 (𝑎 |𝑠) in order to maximize the future reward.

The state transition is achieved by the action of incremen-
tally changing bit length for one field at one time step, and
the next state 𝑠𝑡+1 (tuple length) is only related to the current
state 𝑠𝑡 and the action 𝑎, so this model is obviously a Markov
Decision Process (MDP). As the environment model is not
known, Bellman equation is difficult to be explicitly solved in
this case. Thus, in order to be able to learn from the environ-
ment, we need to let the agent interact with the environment
and get some experiences, then through these experiences
to carry out strategy evaluation and strategy iteration, so as
to finally get the optimal strategy, which is the basic idea
of model-free approach. In this work, Q-learning [42] is uti-
lized to train our partitioning framework, which is a widely
adopted temporal-difference learning method. Q-learning is
an off-policy algorithm using two control strategies, wherein
updated policy is different from the behavior policy. Behav-
ior policy is used to select a new action, and updated policy
is used to update the value function which is defined by the
following Bellman expectation equation:

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) = 𝐸 [𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ...|𝑠𝑡 , 𝑎𝑡] (1)
where 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) is the state-action value function (𝑄 value)
indicating the cumulative reward on the specified “state-
action” on step 𝑡 under policy 𝜋 (𝑎𝑡 |𝑠𝑡), and 𝑅𝑖 means the
reward by the “state-action” on step 𝑖 − 1. Discount factor 𝛾
defines the importance of future rewards.
In the training, a Q-table is firstly established to record

the expected 𝑄 value of each state-action combination. The
state-action values of the Q-table are initialized to 0 and
updated iteratively to provide approximations that continues
to improve by following steps:
Step 1: Choose an action in the current state 𝑠𝑡 through

the 𝜖 greedy strategy and transit to a new state 𝑠𝑡+1, that is,
exploring a new action with probability 𝜖 or choosing an
optimal behavior with probability 1 − 𝜖 .
Step 2: Partition current-level rule set with the tuple

lengths determined by 𝑠𝑡+1, and calculate𝑀𝑡+1 and 𝑁𝑡+1.
Step 3: Update the𝑄 value of previous state by Equation 2:
𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) = (1 − 𝛼)𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 max

𝑎
𝑄𝜋 (𝑠𝑡+1, 𝑎)]

= (1 − 𝛼)𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑓 (𝑐1𝑀𝑡+1 + 𝑐2𝑁𝑡+1)
+ 𝛾 max

𝑎
𝑄𝜋 (𝑠𝑡+1, 𝑎)]

(2)

where 𝛼 is learning rate, max
𝑎

𝑄𝜋 (𝑠𝑡+1, 𝑎) is the maximum
expected future reward given the new state 𝑠𝑡+1 and all pos-
sible actions at 𝑠𝑡+1.
Step 4: Repeat above steps until the state converges to a

pre-defined range.
After the above learning for each rollout, we can get the

tuple lengths at the terminal state which represent a good
choice of field prefix combinations, and accordingly con-
struct a hybrid TSS structure for the rule set in current level.

HybridTSS: A Recursive Scheme Combining Coarse- et al. APNet 2022, July 1–2, 2022, Fuzhou, China

Rule set

 Hash
 (src_addr & FF.80.0.0,

 dest_addr & FE.0.0.0)
R1

R2

Entry 1

Entry 2

1
st

level hashed subset1

R4

R5

Entry 1

Entry 2

1
st

level hashed subset2

R7, R9, R10Entry 3

Hash
(src_addr & 0.0.0.0,

 dest_addr & FC.0.0.0)

R3

R6

Entry 1

Entry 2

1
st

level hashed subset3

R8Entry 3

Hash
(src_addr & FE.0.0.0,

 dest_addr & 0.0.0.0)

Fine-grained tuples

Reinforcement

learning

(src addr tuple len,

dest addr tuple len)

(0, 6)

(7, 0)

(0, 0)

Tuple

2

3

4

1
st

level coarse-grained tuples

(9, 7)1

rules

R1, R2

R4,R5,R7,R9,R10

R3, R6, R8

R11, R12

Reinforcement

learning

(src port tuple len,

dest port tuple len)

(0, 0)

Tuple

2

2
nd

level coarse-grained tuples

(16, 0)1

rules

R7

R9, R10

R7Entry 1

2
nd

level hashed subset1

Hash
(src_port & FFFF,

 dest_addr & 0)

(src addr mask,

dest addr mask)

(1, 1)

Tuple

2

(1, 3)1

rules

R11

R12

Fine-grained tuples

(src addr mask,

dest addr mask)

(0, 7)

Tuple

2

(3, 6)1

rules

R9

R10

Figure 2: A working example of HybridTSS, with the binths = 1 and the MAX recursion level = 2

3.3 Recursive TSS Construction
For a multi-field rule set, each field’s distinct properties can
be taken advantage of to partition rule set without replication.
In each RL training rollout, it is not preferred to select too
many fields for combination because it would cause a large
number of coarse partitioned subsets as well as long training
time. In our experimental evaluations, two fields are selected
for one rollout which could be IP addresses or port ranges for
IPv4 rules in Table 1. Instead of transforming rule port range
to nesting level in the original TSS scheme [36], rule port
fields are simply transformed to Longest Common Prefixes
(LCP) [3, 20] in this work.

As the recursive classifier construction in HybridTSS is
only performed on the aggregated rules in the same hashed
entry sharing the common features in the selected fields at
the current level, it is possible to further separate themwell in
the next rollout with newly incorporated field characteristics.
Besides, the training time of next rollout will be greatly
shortened due to the reduction of rule set size. In fact, one or
two levels of recursive rollouts are sufficient for ClassBench
rule sets in our experiments, and the majority of rules are
generally distributed in the first level.
The classifier structure at every level is a hierarchical

hybrid tuple space scheme consisting of three stages: coarse-
grained tuples, subset hash table, and fine-grained tuples. The
coarse tuples partition rules into very few subsets with rules
in each set sharing similar characteristics on the selected
fields, which facilitates the subsequent hash table establish-
ment because the hash key would exclude wildcard (*) bits
to avoid rule replications. The impartible rules account for
only a small percentage so that fine-grained tuple search
(e.g., PSTSS or TupleMerge) would be efficient on this part.
In summary, the overall number of tuples that need to be
traversed is greatly reduced, and the distribution of rules in
hash tables is balanced through RL, so faster lookup than
TSS is achieved. Compared with the decision tree based ap-
proach, this scheme has more regular data structures and
thus is suitable for OVS implementation.

3.4 A Working Example of HybridTSS
To illustrate HybridTSS more clearly, we walk through an ex-
ample for 12 rules given in Table 1, as illustrated in Figure 2.
Assume that HybridTSS first partitions the rule set into the
following four coarse-grained tuple spaces based on source
and destination IP addresses: (9𝑠𝑟𝑐_𝑎𝑑𝑑𝑟 , 7𝑑𝑠𝑡_𝑎𝑑𝑑𝑟) = {𝑅1, 𝑅2},
(0𝑠𝑟𝑐_𝑎𝑑𝑑𝑟 , 6𝑑𝑠𝑡_𝑎𝑑𝑑𝑟) = {𝑅4, 𝑅5, 𝑅7, 𝑅9, 𝑅10}, (7𝑠𝑟𝑐_𝑎𝑑𝑑𝑟 , 0𝑑𝑠𝑡_𝑎𝑑𝑑𝑟)
= {𝑅3, 𝑅6, 𝑅8}, and (0𝑠𝑟𝑐_𝑎𝑑𝑑𝑟 , 0𝑑𝑠𝑡_𝑎𝑑𝑑𝑟) = {𝑅11, 𝑅12}. We con-
struct hash tables for the first three tuples correspondingly
with different keys of {IP addr value & coarse-grained tu-
ple mask}, while the last subset contains impartible rules
which are searched by fine-grained TSS (e.g., PSTSS or Tu-
pleMerge). Note that the number of rules in entry 3 of subset
2 exceeds binth, so the rules are learned to be partitioned into
coarse-grained tuples in second rollout taking into account
of the source and destination ports. In the following hash
tables, linear search and PSTSS/TupleMerge are applied for
the corresponding rules.

4 EXPERIMENTAL RESULTS
In this section, we evaluate HybridTSS and three represen-
tative TSS-based schemes: PSTSS [28], TupleMerge [7], and
CutTSS [22]. In addition, HybridTSS is also compared with
NuevoMatch [30], which is a state-of-the-art machine learn-
ing based packet classifier. Since NuevoMatch can use differ-
ent algorithms such as CutSplit and TupleMerge to build clas-
sifier for the remaining rules after training, we denote them
as NuevoMatch(CS) and NuevoMatch(TM), respectively. We
evaluate different schemes from the following key aspects:
classification performance and update performance. All ex-
periments are run on a PC with Intel Core i7 CPU@3.20GHz
and 16G 2400MHz DRAM. The OS is Ubuntu 20.04. The rule
sets are generated by ClassBench [40] using default param-
eters, with rule set size varies from 1k to 100k. There are
three types of rule sets: Access Control List (ACL), Firewall
(FW) and IP Chain (IPC). For each size, we generate 12 rule
sets based on 12 seed parameter files (i.e, 5 ACL, 5 FW, and 2
IPC) in ClassBench.

APNet 2022, July 1–2, 2022, Fuzhou, China Yuxi Liu, et al.

10-2

10-1

100

101

 HybridTSS CutTSS NuevoMatch(CS)

 PSTSS TupleMerge NuevoMatch(TM)

100k10k1k

T
im

e
 (

µ
s
)

(a) ACL

10-2

10-1

100

101

 HybridTSS CutTSS NuevoMatch(CS)

 PSTSS TupleMerge NuevoMatch(TM)

100k10k1k

T
im

e
 (

µ
s
)

(b) FW

10-2

10-1

100

101

 HybridTSS CutTSS NuevoMatch(CS)

 PSTSS TupleMerge NuevoMatch(TM)

100k10k1k

T
im

e
 (

µ
s
)

(c) IPC
Figure 3: Average classification time of one packet on three types of rule sets with different sizes

HybridTSS CutTSS

 PSTSS TupleMerge

10-1

100

101

 HybridTSS CutTSS PSTSS TupleMerge

100k10k1k

T
im

e
 (

µ
s
)

(a) ACL

HybridTSS CutTSS

 PSTSS TupleMerge

10-1

100

101

100k10k1k

T
im

e
 (

µ
s
)

 HybridTSS CutTSS PSTSS TupleMerge

(b) FW

HybridTSS CutTSS

 PSTSS TupleMerge

10-1

100

101

100k10k1k

T
im

e
 (

µ
s
)

 HybridTSS CutTSS PSTSS TupleMerge

(c) IPC
Figure 4: Average update time of one rule on three types of rule sets with different sizes

4.1 Classification Performance
To evaluate classification performance, we generate trace
packets ten times the number of rules in each rule set by
ClassBench. In order to reduce the influence of CPU jitter,
each test is run ten times and the average value is taken as
the final result. Figure 3 shows the average classification time
of one packet across all rule sets. We can see that the average
classification time of HybridTSS is 0.187𝜇𝑠 , 0.152𝜇𝑠 , 0.119𝜇𝑠
in each type of rule set. While PSTSS only reaches 1.452𝜇𝑠 ,
1.533𝜇𝑠 and 0.955𝜇𝑠 respectively. HybridTSS achieves 7.76×,
10.09× and 8.03× speed-up compared to PSTSS in terms
of classification time. Moreover, HybridTSS achieves 1.92×,
1.54×, 1.82×, and 1.81× average speed-up on all rule sets,
when compared to CutTSS, TupleMerge, NuevoMatch(TM),
and NuevoMatch(CS) respectively.

4.2 Update Performance
To evaluate update performance, we measure the average
time required to conduct a rule update operation by con-
ducting one million rule updates. For each rule set, a rule
is randomly selected at each time, and the selection of in-
sertion or deletion is also random. Since NuevoMatch can
not support incremental updates well, update performance
evaluation is only conducted among HybridTSS, PSTSS, Tu-
pleMerge and CutTSS. From Figure 4, we can see HybridTSS
is capable of supporting fast rule update with the average
time of 0.314 𝜇𝑠 , 0.251 𝜇𝑠 and 0.219 𝜇𝑠 for different types of
rule sets, and PSTSS consumes 0.284 𝜇𝑠 , 0.255 𝜇𝑠 and 0.221 𝜇𝑠
in average respectively. Besides, HybridTSS achieves an av-
erage of 1.45× and 1.44× speed-up in update time compared
with CutTSS and TupleMerge.

5 CONCLUSION AND FUTUREWORK
HybridTSS, a recursive TSS scheme designed for packet clas-
sification in OVS, is presented in this paper. It avoids tuple
explosion in TSS by recursively partitioning rule sets into
multi-layer tuples from top to bottom. At each stage of the
framework, we adopt the RL method to build a small num-
ber of coarse-grained tuples, which can balance the rule
mapping for the subsequent construction of hash tables and
fine-grained tuples. Then the rules in each coarse-grained
tuple space are hashed into subsets, in which a heteroge-
neous algorithm is applied for fast searching. Experiment
results show that HybridTSS achieves almost an order of
magnitude higher lookup performance than TSS. Further-
more, HybridTSS has similar data structures as TSS, making
it an ideal alternative packet classification algorithm for OVS.
As our future work (or ongoing work), we will improve

HybridTSS from the following aspects: 1) Adopt new ML/RL
approaches for globally balanced tuple partitioning, rather
than each level in this work; 2) Combine packet classification
with flow cache; 3) Integrated to OVS and offload to FPGA.

ACKNOWLEDGMENTS
This work is supported by National Key R&D Program of
China (2020YFB1806400), NSFC (61725206, 62102203), Ba-
sic Research Enhancement Program of China (2021-JCJQ-JJ-
0483), China Postdoctoral Science Foundation (2020TQ0158,
2020M682825), International Postdoctoral Exchange Fellow-
ship Program of China (PC2021037), Key-Area R&D Program
of Guangdong Province (2020B0101130003), Guangdong Ba-
sic andApplied Basic Research Foundation (2019B1515120031),
and theMajor Key Project of PCL (PCL2021A02, PCL2021A08).

HybridTSS: A Recursive Scheme Combining Coarse- et al. APNet 2022, July 1–2, 2022, Fuzhou, China

REFERENCES
[1] Florin Baboescu, Sumeet Singh, and George Varghese. 2003. Packet

classification for core routers: Is there an alternative to CAMs?. In IEEE
INFOCOM.

[2] Florin Baboescu and George Varghese. 2001. Scalable Packet Classifi-
cation. In ACM SIGCOMM.

[3] Yeim-Kuan Chang. 2006. A 2-level TCAM architecture for ranges. IEEE
Trans. Comput. 55, 12 (2006), 1614–1629.

[4] Yeim-Kuan Chang. 2008. Efficient multidimensional packet classifica-
tion with fast updates. IEEE Trans. Comput. 58, 4 (2008), 463–479.

[5] Yeim-Kuan Chang and Chun-Sheng Hsueh. 2015. Range-enhanced
packet classification design on FPGA. IEEE Transactions on Emerging
Topics in Computing 4, 2 (2015), 214–224.

[6] H. Jonathan. Chao and Bin Liu. 2007. High Performance Switches and
Routers. In John Wiley & Sons, Ltd.

[7] James Daly and et al. 2019. TupleMerge: Fast software packet pro-
cessing for online packet classification. IEEE/ACM Transactions on
Networking 27, 4 (2019), 1417–1431.

[8] James Daly and Eric Torng. 2018. ByteCuts: Fast Packet Classification
by Interior Bit Extraction. In IEEE INFOCOM.

[9] Jeffrey Fong and et al. 2012. ParaSplit: A scalable architecture on FPGA
for terabit packet classification. In IEEE Hot Interconnects.

[10] Filippo Geraci, Marco Pellegrini, Paolo Pisati, and Luigi Rizzo. 2005.
Packet classification via improved space decomposition techniques. In
IEEE INFOCOM.

[11] Pankaj Gupta and Nick McKeown. 1999. Packet classification on
multiple fields. In ACM SIGCOMM.

[12] Pankaj Gupta and Nick McKeown. 1999. Packet classification using
hierarchical intelligent cuttings. In IEEE Hot Interconnects.

[13] Pankaj Gupta and Nick McKeown. 2001. Algorithms for packet classi-
fication. IEEE Network 15, 2 (2001), 24–32.

[14] Peng He, Gaogang Xie, Kavé Salamatian, and Laurent Mathy. 2014.
Meta-algorithms for software-based packet classification. In IEEE
ICNP.

[15] Weirong Jiang and Viktor K Prasanna. 2012. Scalable Packet Classi-
fication on FPGA. IEEE Transactions on Very Large Scale Integration
Systems 20, 9 (2012), 1668–1680.

[16] Marios Evangelos Kanakis, Ramin Khalili, and Lin Wang. 2022. Ma-
chine Learning for Computer Systems and Networking: A Survey.
Comput. Surveys (2022).

[17] Maciej Kuźniar, Peter Perešíni, and Dejan Kostić. 2015. What you need
to know about SDN flow tables. In International Conference on Passive
and Active Network Measurement.

[18] TV Lakshman and Dimitrios Stiliadis. 1998. High-speed policy-based
packet forwarding using efficient multi-dimensional range matching.
In ACM SIGCOMM.

[19] Wenjun Li and et al. 2019. Memory-efficient recursive scheme for
multi-field packet classification. IET Communications 13, 9 (2019),
1319–1325.

[20] Wenjun Li and et al. 2019. A power-saving pre-classifier for TCAM-
based IP lookup. Computer Networks 164 (2019), 106898.

[21] Wenjun Li and et al. 2019. TabTree: A TSS-assisted Bit-selecting Tree
Scheme for Packet Classification with Balanced Rule Mapping. In
ACM/IEEE ANCS.

[22] Wenjun Li and et al. 2020. Tuple Space Assisted Packet Classification
with High Performance on Both Search and Update. IEEE Journal on
Selected Areas in Communications 38, 7 (2020), 1555–1569.

[23] Wenjun Li and Xianfeng Li. 2013. HybridCuts: A scheme combin-
ing decomposition and cutting for packet classification. In IEEE Hot
Interconnects.

[24] Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. 2018. CutSplit: A
Decision-Tree Combining Cutting and Splitting for Scalable Packet
Classification. In IEEE INFOCOM.

[25] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural packet
classification. In ACM SIGCOMM.

[26] Hyesook Lim and So Yeon Kim. 2010. Tuple pruning using Bloom
filters for packet classification. IEEE Micro 30, 3 (2010), 48–59.

[27] Nick McKeown and et al. 2008. OpenFlow: Enabling innovation in
campus networks. In ACM SIGCOMM.

[28] Ben Pfaff and et al. 2015. The design and implementation of Open
vSwitch. In USENIX NSDI.

[29] Yaxuan Qi and et al. 2009. Packet classification algorithms: From
theory to practice. In IEEE INFOCOM.

[30] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. 2020. A
Computational Approach to Packet Classification. In ACM SIGCOMM.

[31] Alon Rashelbach, Ori Rottenstreich, andMark Silberstein. 2022. Scaling
Open vSwitch with a Computational Cache. In USENIX NSDI.

[32] Ori Rottenstreich and et al. 2013. Compressing forwarding tables. In
IEEE INFOCOM.

[33] Ori Rottenstreich and et al. 2020. Cooperative rule caching for SDN
switches. In IEEE CloudNet.

[34] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. 2003.
Packet classification using multidimensional cutting. In ACM SIG-
COMM.

[35] Haoyu Song, Jonathan Turner, and Sarang Dharmapurikar. 2006.
Packet classification using coarse-grained tuple spaces. In ACM/IEEE
ANCS.

[36] Venkatachary Srinivasan, Subhash Suri, and George Varghese. 1999.
Packet Classification using Tuple Space Search. In ACM SIGCOMM.

[37] Venkatachary Srinivasan, George Varghese, Subhash Suri, and Marcel
Waldvogel. 1998. Fast and Scalable Layer Four Switching. In ACM
SIGCOMM.

[38] David E Taylor. 2005. Survey and taxonomy of packet classification
techniques. Comput. Surveys 37, 3 (2005), 238–275.

[39] David E Taylor and Jonathan S Turner. 2005. Scalable packet classifica-
tion using distributed crossproducing of field labels. In IEEE INFOCOM.

[40] David E Taylor and Jonathan S Turner. 2007. ClassBench: A packet
classification benchmark. IEEE/ACM Transactions on Networking 15, 3
(2007), 499–511.

[41] Balajee Vamanan, Gwendolyn Voskuilen, and TN Vijaykumar. 2010. Ef-
fiCuts: Optimizing Packet Classification for Memory and Throughput.
In ACM SIGCOMM.

[42] Christopher JCHWatkins and Peter Dayan. 1992. Q-learning. Machine
learning 8, 3 (1992), 279–292.

[43] Yao Xin and et al. 2021. KickTree: A Recursive Algorithmic Scheme
for Packet Classification with Bounded Worst-Case Performance. In
ACM/IEEE ANCS.

[44] Yao Xin and et al. 2022. FPGA-based Updatable Packet Classification
using TSS-combined Bit-selecting Tree. IEEE/ACM Transactions on
Networking (2022).

[45] Yang Xu, Zhaobo Liu, Zhuoyuan Zhang, and H. Jonathan Chao. 2014.
High-Throughput and Memory-Efficient Multimatch Packet Classifi-
cation Based on Distributed and Pipelined Hash Tables. IEEE/ACM
Transactions on Networking 22, 3 (2014), 982–995.

[46] Sorrachai Yingchareonthawornchai, James Daly, Alex X Liu, and Eric
Torng. 2016. A sorted partitioning approach to high-speed and fast-
update OpenFlow classification. In IEEE ICNP.

[47] Xinyi Zhang and et al. 2021. Fast Online Packet Classification With
Convolutional Neural Network. IEEE/ACM Transactions on Networking
29, 6 (2021), 2765–2778.

	Abstract
	1 Introduction
	2 Backgroud and Related Work
	2.1 The Packet Classification Problem
	2.2 Tuple Space based Solutions

	3 Algorithm Design
	3.1 Framework of HybridTSS
	3.2 Top-down TSS Partitioning with RL
	3.3 Recursive TSS Construction
	3.4 A Working Example of HybridTSS

	4 Experimental Results
	4.1 Classification Performance
	4.2 Update Performance

	5 Conclusion and Future Work
	Acknowledgments
	References

