
2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)

TabTree: A TSS-assisted Bit-selecting Tree Scheme for
Packet Classification with Balanced Rule Mapping

Wenjun Li∗†‡, Tong Yang‡, Yeim-Kuan Chang§, Tao Li¶ and Hui Li∗†‡
∗Peking University Shenzhen Graduate School, †Peng Cheng Laboratory, ‡Peking University, §NCKU, ¶NUDT

Email: {wenjunli, yang.tong}@pku.edu.cn, ykchang@mail.ncku.edu.tw, taoli network@163.com, lih64@pkusz.edu.cn

Abstract—To support fast rule updates in SDN, the Open
vSwitch implements Priority Sorting Tuple Space Search (PSTSS)
for its packet classifications. Although it has good performance
on rule updates, it has a performance concern on table lookups.
In contrast, decision tree methods are being actively investigated
for high throughput, but they are not able to support fast updates
because of rule replications. CutSplit, the state-of-the-art decision
tree scheme, provides a novel rule update mechanism by avoiding
tree reconstructions. However, its average update time is still
two orders of magnitude larger than PSTSS. Meanwhile, existing
decision trees are not only unbalanced but also depth unbounded,
making them difficult to be optimized on FPGA. In this paper,
we present a new decision tree scheme called TabTree, which
achieves high performance on both lookups and updates. By
mapping rules into tree nodes dynamically, a very limited number
of balanced trees with bounded depths can be generated without
the trouble of rule replications. Experimental results show that,
TabTree has comparable update performance to PSTSS, but it
outperforms PSTSS significantly in terms of number of memory
accesses for packet classification. Additionally, TabTree is more
practical for implementations on FPGA.

Index Terms—OpenFlow, OVS, packet classification, FPGA

I. INTRODUCTION

OpenFlow switches are being deployed in SDN/NFV to
enable a wide spectrum of non-traditional applications, such
as flexible resource partitioning and real-time migration. The
OpenFlow switch enforces forwarding policies with match-
action table lookups, which is essentially a multi-field packet
classification problem [1]. As an extensively studied bottleneck
[2], hardware using expensive TCAM has been the dominant
implementation of packet classification in commercial Open-
Flow switches. Despite its capability for line-speed classifi-
cations, TCAM is not only area-inefficient [3]–[9] and power
hungry [10]–[15], but also not suitable for representing rules
with range fields [16]–[28]. Meanwhile, OpenFlow has a much
higher demand on rule updates, while modern TCAM still
suffers from high update complexity [29]–[34]. Thus, efficient
algorithmic solutions using ordinary memories are becoming
a revitalized demand.

This work is supported by NSFC (61671001, 61672061), Key Areas R&D
Program of Guangdong (2019B010137001), National Keystone R&D Program
of China (2017YFB0803204, 2016YFB1000304, 2018YFB1800402), PCL
Future Regional Network Facilities for Large-scale Experiments and Applica-
tions (PCL2018KP001), Shenzhen Municipal Development and Reform Com-
mission (Disciplinary Development Program for Data Science and Intelligent
Computing) and Shenzhen Research Program (JCYJ20170306092030521).
Corresponding authors Hui Li and Wenjun Li are also with Shenzhen Key Lab
of Information Theory and Future Internet Architecture, Shenzhen, P.R.China.

Among algorithmic packet classifications, decision tree and
TSS are two major approaches. Decision tree has been recog-
nized as a promising alternative to TCAM-based solutions,
because of the following reasons: 1) it is well suited for
handling rules with more fields, such as OpenFlow; 2) it
is inherently favorable for implementations on modern hard-
wares, such as FPGA. So, decision tree algorithms [35]–
[47] and its practical hardware implementations [48]–[64] are
being actively investigated in the past decade. However, these
decision trees cannot support fast updates because of the
notorious rule replications. Recently, CutSplit [44] provides a
novel rule update mechanism by avoiding tree reconstruction,
but it takes an average of 50us, which is still two orders of
magnitude larger than TSS schemes. Besides, existing decision
trees are not only unbalanced but also depth unbounded,
making them difficult to be well optimized on FPGA.

In contrast, TSS (Tuple Space Search) partitions rules into
a set of hash tables without any rule replications, thereby
enabling an average of one memory access for each rule
update [65]–[67]. Thus, the popular Open vSwitch implements
a variant of TSS called PSTSS [66] for its flow table lookups,
the primary reason is its good support for fast rule updates,
which is an important metric for SDN switches [68]. However,
TSS schemes have a performance concern because of tuple
expansions for large tables with more fields. Although the
recent OpenFlow specification puts forward the multiple match
tables (MMT) model that allows multiple smaller flow tables
to be matched in a pipeline of stages, MMT may introduce
higher latency for packets [69].

In this paper, we present a new decision tree scheme called
TabTree (TSS-assisted bit-selecting Tree), which achieves
high performance on both table lookups and rule updates.
Essentially, TabTree is a two-stage framework for packet
classification. In the first stage, several balanced bit-selecting
trees are constructed from rule subsets grouped with respect
to their small fields. This grouping eliminates wildcard (*)
at a set of most significant bits in small fields, thereby
enabling efficient rule mapping without the trouble of rule
replications. The second stage handles the terminated nodes
from pre-mappings, where wildcards may lead to serious rule
replications. A salient fact is that after pre-mappings, the
number of rules in the terminal nodes has been significantly
reduced, where the linear search or TSS approaches can be
well applied for these subsets to facilitate tree constructions.

978-1-7281-4387-3/19/$31.00 © 2019 IEEE

The main contributions of this paper are as follows:

• A novel two-stage framework consisting of heterogeneous
algorithms: decision tree, linear search and TSS.

• Two heuristic bit-selecting algorithms are proposed to
build partial trees in the first stage, which can map rules
into tree nodes as balanced as possible.

• A TSS based scheme is used to assist decision tree
constructions in the second stage, which can bound the
tree depth and avoid rule replications simultaneously.

• A novel range encoding scheme is proposed, so that the
range fields can also be employed for bit-selecting in the
first stage of decision tree constructions.

Using ClassBench [70], preliminary experimental results
show that, a very limited number of balanced and depth
bounded subtrees can be generated in TabTree. Compared
to the PSTSS algorithm, TabTree has similar update per-
formance as PSTSS, but achieves 4.3 times reduction on
the number of memory accesses for packet classification.
Compared with another two latest decision tree schemes:
CutSplit [44] and PartitionSort [42], TabTree also outperforms
these two schemes on both lookups and updates considerably.
Besides, experimental results also show that, even for rule
sets up to 100k entries, TabTree can still construct shallow
decision trees in a few MBytes, making it favorable for
implementations and optimizations on FPGA. Our implemen-
tation of TabTree will be publicly available in our website
(http://www.wenjunli.com/TabTree).

The rest of the paper is organized as follows. Section II
briefly summarizes background and motivation. Section III
presents the technical details of TabTree. Section IV provides
preliminary experimental results. Finally, Section V draws the
conclusion and our future work.

II. BACKGROUND & MOTIVATION

In this section, we first review the background and some
classic approaches about packet classification. After that, we
briefly describe two related algorithmic approaches: tuple
space and decision tree. Finally, we give the motivation.

A. The Packet Classification Problem

The purpose of packet classification is to enable differ-
entiated packet treatment according to a predefined packet
classifier. A packet classifier is a set of rules, with each rule
containing multiple field values (exact value, prefix or range)
and an action to be taken in case of a match. Table I shows
14 rules defined over two prefix fields, which was before used
in SmartPC [13]. As an extensively studied problem [2], a lot
algorithmic approaches have been proposed in its first decade,
such as decision tree [71]–[76], decomposition [71], [77]–[82]
and TSS [65], [83]. Since TSS and decision tree are related
to our proposed TabTree, we next give more detailed review
about these two approaches, as well as their latest progress in
the last decade.

TABLE I
EXAMPLE RULE SET WITH TWO IPV4 ADDRESS FIELDS

rule id priority src addr field dst addr field action
R1 14 228.128.0.0/9 0.0.0.0/0 action1
R2 13 223.0.0.0/9 0.0.0.0/0 action2
R3 12 0.0.0.0/1 175.0.0.0/8 action3
R4 11 0.0.0.0/1 225.0.0.0/8 action4
R5 10 0.0.0.0/2 225.0.0.0/8 action5
R6 9 128.0.0.0/1 123.0.0.0/8 action6
R7 8 128.0.0.0/1 37.0.0.0/8 action7
R8 7 0.0.0.0/0 123.0.0.0/8 action8
R9 6 178.0.0.0/7 0.0.0.0/1 action9
R10 5 0.0.0.0/1 172.0.0.0/7 action10
R11 4 0.0.0.0/1 226.0.0.0/7 action11
R12 3 128.0.0.0/1 120.0.0.0/7 action12
R13 2 128.0.0.0/2 120.0.0.0/7 action13
R14 1 128.0.0.0/1 38.0.0.0/7 action14

B. Tuple Space based Solutions

The original TSS scheme [65] partitions rules into a set of
hash tables (i.e., tuple space) without any rule replications,
which is based on easily computed rule characteristics such
as prefix length. For example, rules in Table I can be parti-
tioned into the following seven tuple spaces: {(9,0)|R1, R2},
{(1,8)|R3, R4, R6, R7}, {(2,8)|R5}, {(0,8)|R8}, {(7,1)|R9},
{(1,7)|R10, R11, R12, R14} and {(2,7)|R13}. Thus, rules can
be inserted and deleted from hash tables in amortized one
memory access, resulting in high update performance. But
in order to find the best matching rule for each packet, all
these partitioned hash tables have to be searched exhaustively,
resulting in low lookup performance. As an improvement,
PSTSS [66] reduce average table lookups by introducing a
pre-computed priority for each tuple space, so that each search
can terminate as soon as a match is found. However, its worst-
case performance is still the same as TSS. TupleMerge [67], a
recently proposed tuple space scheme, improves upon TSS by
relaxing the restrictions on which rules may be placed in the
same tuple space. However, with more tuple spaces merged,
its performance may be affected due to hash collisions.

C. Decision Tree based Solutions

In decision tree based schemes, the geometric view of the
packet classification problem is taken and a decision tree
is built. The root node covers the whole searching space
containing all rules. They work by recursively partitioning
the searching space into smaller sub-spaces, until the rules
covered by each sub-space is less than the pre-defined bucket
size called binth. In case a rule spans multiple sub-spaces, the
undesirable rule replication happens (e.g., R8 in Figure 1).
When a packet arrives, the decision tree is traversed based
on the key values in the packet header, to find a matching
rule at a leaf node. According to the partitioning method on
searching space, current decision trees can be categorized into
the following two major approaches:

1) Bit-selecting based Cutting. Cutting based schemes, such
as HiCuts [72] and HyperCuts [76], separate the searching
space into many equal-sized sub-spaces using local optimiza-
tions. Figure 1 shows the decision tree constructed using
HyperCuts for 14 rules shown in Table I.

Fig. 1. An example of HyperCuts (binth = 5).

From a binary bits point of view, the cutting operation can
be treated as a bit-selecting problem equivalently, which can
be illustrated from the internal nodes in Figure 1. According
to the bit-selecting mechanism, these cuttings can be further
categorized into two major approaches: 1) select orderly from
the most significant field bits to the least significant field bits,
such as HiCuts and HyperCuts; 2) select discretely among
arbitrary field bits, such as ModularPC [74] and MC-SBC [62],
as well as our proposed TabTree.

2) Point-comparing based Splitting. By selecting a few
balanced points, splitting based schemes such as HyperSplit
[35], divide the searching space into several unequal-sized sub-
spaces while containing nearly equal number of rules. When
a packet arrives, the decision tree is traversed by comparing
with the balanced points stored in each internal node. Since our
proposed TabTree falls into the category of bit-selecting based
cutting trees, more detailed review and working examples
about splitting trees can refer to [35], [44].

As reviewed in CutSplit, rule replication is the key trouble-
maker for decision trees. To reduce rule replications, rule
partition has been recognized as a common practice and a
lot novel partition based decision trees have been proposed
in the past decade, such as EffiCuts [36], ParaSplit [53],
HybridCuts [37], SmartSplit [38], MC-SBC [62], PartitionSort
[42], ByteCuts [43], CutSplit [44] and NeuroCuts [47]. But as
far as we know, rule replication is still a performance hurdle
against decision trees to achieve fast rule updates.

D. Why Yet Another Decision Tree?

Clearly, decision tree has been actively investigated in the
past decade. But most of them achieve high-speed lookups
but not fast updates. Recently, CutSplit provides a novel rule
update mechanism by avoiding tree reconstructions in most
cases. However, it still need to reconstruct sub-trees in post-
splitting stages, leading to 10x-100x times for rule updates
than PSTSS. Although PartitionSort, the latest splitting tree,
achieves high update performance by avoiding rule replications
in each partitioned subset, it suffers from too many memory
accesses and a large number of separated subtrees.

Fig. 2. The framework of TabTree.

Additionally, FPGA has been recognized as a promising
alternative to TCAMs [84]–[88]. To fully exploit the potential
of FPGA, a FPGA-friendly tree scheme should also meet the
following demand: a controllable number of balanced and
bounded subtrees with low memory footprints, while most
existing trees are unbalanced and/or unbounded.

Thus, to achieve fast lookups and updates for packet clas-
sification at the same time, we propose TabTree, a novel bit-
selecting tree which is also desirable for FPGA implementa-
tions and optimizations.

III. OUR PROPOSED APPROACH

In this section, we first introduce the ideas and framework of
TabTree. Then, we employ a scalable rule partition algorithm
and reveal some novel observations on partitioned rule subsets.
To exploit these characteristics of subsets, two heuristic bit-
selecting algorithms are proposed to map rules into tree nodes
as balanced as possible. Finally, a TSS based scheme is applied
to facilitate tree constructions, which can bound the tree depth
and avoid rule replications.

A. Ideas & Framework
According to above review, decision tree can support fast

lookups but not updates, while TSS can support fast update
but not lookups. Therefore, the idea directly perceived is to
design a heterogeneous framework that can take advantage
of both decision tree and TSS approaches: TSS-assisted tree.
But, in order to design a FPGA-friendly decision tree which
can achieve high performance on both lookups and updates,
TabTree still faces several difficulties and challenges: 1) low
memory footprint; 2) limited rule subsets; 3) low memory
access; 4) easy for updates; 5) bounded tree depth.

To address the first two challenges, we adopt the existing
partition methods based on small fields, so that a very limited
number of decision trees can be generated in linear memory
without the trouble of rule replications. To address the third
challenge, we proposed two heuristic bit-selecting algorithms,
which can build trees as shallow as possible. For the last
two challenges, we employ a TSS based scheme to assist tree
constructions. Figure 2 shows the framework of TabTree.

B. Partitioning & Observations

Before describing the partitioning and key observations, we
first give the definition of an important concept: small field.
More definitions and notations can refer to [37], [44].

1) Definition of Small Field:
Given an N-field rule R = (F1, ..., Fi, ... FN) and a threshold

value vector T = (T1, ..., Ti, ... TN), we give a definition for
field Fi as follows: if the range span length of field Fi ≤
threshold value Ti, we say that Fi is a small field.

2) Rule Partition based on Small Fields:
Based on the observations revealed in CutSplit that, even

under very demanding thresholds, most rules still have at least
one small field. Thus, similar to CutSplit, we can partition
the vast majority of the rules into a very limited number of
subsets without duplicates among each other, where rules in
each subset share a common characteristic in the selected
fields: small field. More details on partitioning and merging
can refer to paper [44]. Besides, since the number of rules
without any small fields is negligible, we can simply employ
the TSS based scheme such as PSTSS to handle these rules
in software simulations.

3) Key Observations on Small Fields:
By examining rules grouped with respect to their small

fields, we identify a useful observation on rule fields, which
is the key basis of the following proposed bit-selecting trees:
For the small field of grouped rules with the type of prefix or
exact value, there are a set of most significant bits which are
indicated by either bit-0 or bit-1. More specifically, for a W-bit
wide field Fi with the threshold value of 2K , we can draw the
conclusion that, Fi is a small field if and only if there are no
wildcard (*) at its most significant W−K bits. In this paper,
we call these W−K bits as selectable bits. For the small field
of grouped rules with range type, we give a novel encoding
scheme in next subsection, and show that the observation is
still valid for its encoded prefixes.

C. False Range Encoding

Before describing the encoding scheme and key observa-
tions, we first give several definitions for a W-bit wide range
Rab = [a, b]. More definitions and notations can refer to [18],
[22], [26], [28].

1) Definitions:
–Longest Common Prefix (LCP): LCPab is the longest prefix

that covers the range Rab. If prefixes are illustrated in a binary
trie, LCPab is the lowest common ancestor of integer a and
integer b.

–Splitting Endpoint: For each range Rab, there are two
splitting endpoints (one if a = b), where the value of these
two endpoints are the middle two values of LCPab (i.e., m &
n in Figure 3).

–Extremal Range: The range Rab is called extremal range,
if a = 0 or b = 2W − 1.

–Generalized Extremal Range: More broadly, the extremal
range Rab is called generalized extremal range, if integer a is
the leftmost value of LCPab or integer b is the rightmost value
of LCPab.

a b

0 1

LCPam

LCPnb

m n

0 1

0 1

p q

LCPab

Fig. 3. False encoding sample (Rab ≈ LCPam & LCPnb).

2) Encoding with Low False Positive:
Unlike traditional range encodings for TCAMs, which re-

quire to ensure absolute semantic equivalence, false positive
is allowed in algorithmic decision trees. The reason is that,
the main function of decision trees is to separate rules into
subspaces, where linear search is still required for rules located
in these subspaces. Thus, for each incoming packet, false
negative can never happen in decision trees and the negative
impact on correct search caused by false positive can also
be eliminated by linear search in leaf nodes. Based on this
observation, we describe a simple encoding scheme for ranges,
which achieves low false positive and low range expansion
simultaneously. In essence, the goal of our scheme is to find at
most two longest prefixes, which can cover the range entirely.
The encoding steps are as follows:

–Step 1: If Rab is a generalized extremal range, skip to step
2. Otherwise, split Rab into two generalized extremal ranges
(i.e., Ram and Rnb in Figure 3);

–Step 2: For each split generalized extremal range, output
its LCP as an encoded prefix (i.e., LCPam for Ram and LCPnb

for Rnb in Figure 3);
–Step 3: If the two encoded prefixes are with the same prefix

length, output LCPab as the final encoded prefix.
Note that there is a key difference between our encoding

and traditional TCAM encodings: The encoded prefixes are
only used during decision tree constructions, and rules stored
in leaf nodes are still the original rules with ranges.

3) Narrower Ranges, Longer Perfixes:
Based on above encoding scheme, the range Rab shown in

Figure 3 can be encoded into two prefixes: LCPam & LCPnb.
For these encoded prefixes, we have the following theorem:

–Theorem 1: For a W-bit wide range Rab, the length of
encoded prefixes using our encoding scheme are both ≥ L,
where L = W − dlog2 (b− a+ 1)e.

Theorem 1 can be easily proved based on previous liter-
atures [18], [22], [26], but due to the consideration on its
relevance and space limit, we do not elaborate on detailed
proofs in this paper. Based on this theorem, we can draw the
conclusion that, the observation described in above subsection
is still valid for small range fields, that is to say: For the small
field of grouped rules with range type, there are still a set of
selectable bits in its encoded prefixes, which are indicated by
either bit-0 or bit-1.

D. Balanced Bit-selecting

The rationale behind the above strategy of partitioning is
simple: by grouping rules that are narrow in the same fields,
we get a set of selectable bits among grouped rules without
wildcard values. Thus, each selectable bit can map rules into
at most two subsets without any rule replications. To exploit
this favorable property, we build a multi-way tree by selecting
a few selectable bits in each tree node recursively.

In order to build shallow decision trees, the key challenge is
how to select a few most distinguishing selectable bits in each
tree node, so that rules can be mapped into its children nodes
as balanced as possible. Next, we introduce two heuristic bit-
selecting strategies for this purpose. To control the width of the
tree, we assume that at most b bits are allowed to be selected
in each tree node.

1) Brute Force Strategy:
Assume that there are M rules and B unused selectable bits

in current node, the brute force algorithm is to find the most
distinguishing b bits, which partition the rules in current node
into n = 2b subsets in the most balanced fashion. Thus, our
goal is to find the best one from Cb

B bit combinations that
minimize the value of the objective function defined in (1),
that means the size of generated subsets are most similar. Here,
xi is the number of rules in the i-th subset.

costFunc(b bits) =

√∑n
i=1(xi − x)2

n
,where x =

M

n
(1)

This bit-selecting strategy, though simple and optimal, is
computationally expensive to calculate, as it involves compar-
ing fully among all Cb

B bit combinations. As a compromise,
we next give a greedy bit-selecting strategy, which has much
low computational cost.

2) Greedy Strategy:
Unlike brute force algorithm which selects multiple bits at

a time with global optimization, greedy algorithm tries to find
a local optimal solution, where the “good” bits are selected
one by one recursively. We assign an imbalance value for
each current selectable and unused bit by using (2), where
#ruleLChild/#ruleRChild is the number of rules mapped into
the left/right child node (i.e., #bit-0/1s in v-th bit). The greedy
algorithm is to choose at most b bits one by one, where each
selected single bit is with the smallest imbalance value among
current selectable and unused bits.

imbalance(bit v) = |#ruleLChild−#ruleRChild| (2)

E. TSS-assisted Decision Tree

As reviewed in above section, a FPGA-friendly decision
tree should also bound its tree depth, so that it can be easily
optimized for FPGA pipeline stages. Meanwhile, to achieve
high update performance, rule replication in the second stage
has been the key performance metric of TabTree.

In order to bound tree depth and support fast rule updates,
TabTree stops its first stage bit-selecting progress in one of
the following cases: 1) the tree depth achieves the predefined
maximum value; 2) the number of rules in the mapped tree

TABLE II
PARTITIONED RULES WITH SMALL DST ADDR FIELD

rule src addr (Tsrc addr= 225) dst addr (Tdst addr= 225)
id 1-32th bits 33-39th 40-64th bits
R3 0******************************* 1010111 1************************
R4 0******************************* 1110000 1************************
R5 00****************************** 1110000 1************************
R6 1******************************* 0111101 1************************
R7 1******************************* 0010010 1************************
R8 ******************************** 0111101 1************************
R10 0******************************* 1010110 *************************
R11 0******************************* 1110001 *************************
R12 1******************************* 0111100 *************************
R13 10****************************** 0111100 *************************
R14 1******************************* 0010011 *************************

Fig. 4. TSS-assisted decision tree for rules in Table II.

node is less than a predefined threshold value (i.e., binth);
3) the remaining unselected rule bits share same values and
cannot separate rules from each other; 4) the further bit-
selecting will led to rule replications due to the wildcards.
Then, TabTree resorts to other more effective methods for the
following tree constructions.

A salient fact is that after balanced pre-mappings, the
number of rules in the terminal nodes (i.e., leaf nodes) has
been significantly reduced. To exploit this favorable property,
we employ the linear search (#rules ≤ binth) or the PSTSS
(#rules > binth) to facilitate tree constructions.

F. A Working Example

To illustrate TabTree more clearly, we give a working
example for 14 rules given in Table I. Assume that each
internal tree node is allowed to select a maximum of two bits
for rule mapping and the binth of the leaf node is one, the
threshold value vector is T = (Tsrc addr= 225, Tdst addr= 225).

TabTree first partitions the 14 rules into the following
two rule subsets: (arbitrarysrc addr, smalldst addr) = {R3,
R4, R5, R6, R7, R8, R10, R11, R12, R13, R14} and
(smallsrc addr, arbitrarydst addr) = {R1, R2, R9}. Thus,
for the small field of grouped rules in each subset, there
are 32−25=7 selectable bits. After rule partition, a TSS-
assisted decision tree is constructed for each rule sub-
set. For example, Table II shows the partitioned rules in
(arbitrarysrc addr, smalldst addr) with the representation of
ternary strings. Clearly, the middle 7 bits (i.e., 33-39th) in
Table II are selectable bits. Based on the proposed bit-selecting
and TSS-assisted methods, Figure 4 shows the TSS-assisted
decision tree constructed for the rules shown in Table II.

IV. PRELIMINARY EVALUATION

Using ClassBench [70], we compare TabTree with PSTSS,
CutSplit and PartitionSort, where the source codes of these
three algorithms are downloaded from [42], [44]. There are
three types of rule sets: ACL, FW and IPC, whose size varies
from 1k to 100k. For each size, we generate 12 rule sets based
on 12 seed files in ClassBench. Assume that each tree depth is
limited to 5 and binth is 4. We next evaluate from the following
key metrics respectively.

A. Number of Subsets

Table III shows the number of partitioned rule subsets
in TabTree and another three algorithms. Clearly, TabTree
and CutSplit produce a relatively stable number of subsets
regardless of the type and size of rulesets, with an average of
3.7 subsets. Essentially, this partition result is consistent with
existing observations on ClassBench rules: IP addresses are
the most distinguishing rule fields. In contrast, the number of
partitioned subsets in PSTSS and PartitionSort ranges from 10
to 230, with an average of 152 and 21 subsets respectively.

B. Memory Footprint

Table III also shows the memory footprint of TabTree and
another three algorithms. Experimental results show that Tab-
Tree requires less space than other algorithms and the memory
consumption of TabTree increases almost linearly with the rule
set size. Even for rule sets up to 100k entries, TabTree can still
construct decision trees in a few MBytes, small enough to be
accommodated into the Block RAM (BRAM) of middle-end
FPGAs, such as Xilinx Virtex-7 FPGAs.

C. Memory Access

We measure memory access by classifying all packets in
trace files generated by ClassBench when it constructs the
corresponding rule set. Figure 5 shows the memory access of
TabTree and another three algorithms. For simplicity, we think
traversing a decision tree node, a rule or a tuple table as one
memory access in our experiments. It is obvious that TabTree
is significantly better others, achieves an average of 4.3 times
reduction compared with PSTSS. Compared to PartitionSort
and CutSplit, TabTree also achieves 2.5 times and 1.3 times
improvement on average.

D. Update Performance

We measure incremental update time as the time required to
performance one rule insertion or deletion. For each rule set,
we shuffle rules randomly to generate a sequence of update
operations, with half of insertions intermixed with half of
deletions. Figure 6 shows that TabTree has comparable update
performance to PSTSS, achieving an average of 2 MUPS
(Millions of Update Per Second) in software simulations.

Thus, preliminary experimental evaluations show that, a
very limited number of shallow trees can be generated with
linear memory consumption in TabTree, which is also suitable
for fast rule updates. More evaluations on FPGA will be given
in our future work.

TABLE III
AVERAGE SUBSETS & MEMORY FOOTPRINT

Algorithms rules #Subsets Memory footprint (MB)
1k 10k 100k 1k 10k 100k

TabTree
ACL 3.8 3.8 3.4 0.03 0.25 2.34
FW 4 4 4 0.03 0.21 2.44
IPC 3.5 3.5 3.5 0.03 0.28 2.31

PSTSS
ACL 144.4 230.2 267 0.05 0.44 4.66
FW 69.8 95.6 99.8 0.04 0.45 4.31
IPC 114.5 164 185.5 0.04 0.48 4.92

PartitionSort
ACL 11 21.6 26.8 0.05 0.49 5.22
FW 19.4 24.4 34.4 0.05 0.51 4.88
IPC 10 11.5 12 0.05 0.54 5.57

CutSplit
ACL 3.8 3.8 3.4 0.04 1.28 11.52
FW 4 4 4 0.04 4.17 18.29
IPC 3.5 3.5 3.5 0.04 3.29 26.86

(a) TabTree (b) PSTSS

(c) PartitionSort (d) CutSplit

Fig. 5. Numbers of memory accesses.

(a) TabTree (b) PSTSS
Fig. 6. Update performance.

V. CONCLUSION AND OUR FUTURE WORK

To achieve fast lookups and updates at the same time,
we propose a TSS-assisted decision tree scheme for packet
classification with balanced rule mappings, which is also more
friendly and practical for FPGA implementations. As our
future work, we will improve TabTree from the following
aspects: 1) self-adaptive rule partition instead of based on
small fields; 2) design rule cache algorithm for TabTree.
Besides, we will also implement our scheme on FPGA.

REFERENCES

[1] N. McKeown and et al, “Openflow: enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[2] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Computing Surveys, vol. 37, no. 3, pp. 238–275, 2005.

[3] M. G. Gouda and A. X. Liu, “Firewall design: Consistency, complete-
ness, and compactness,” in IEEE ICDCS, 2004.

[4] A. X. Liu, C. R. Meiners, and E. Torng, “Tcam razor: A systematic
approach towards minimizing packet classifiers in tcams,” IEEE/ACM
Transactions on Networking, vol. 18, no. 2, pp. 490–500, 2010.

[5] C. R. Meiners, A. X. Liu, E. Torng, and J. Patel, “Split: Optimiz-
ing space, power, and throughput for tcam-based classification,” in
ACM/IEEE ANCS, 2011.

[6] O. Rottenstreich and et al, “Compressing forwarding tables,” in IEEE
INFOCOM, 2013.

[7] E. Norige, A. X. Liu, and E. Torng, “A ternary unification framework
for optimizing tcam-based packet classification systems,” in ACM/IEEE
ANCS, 2013.

[8] O. Rottenstreich and et al, “Lossy compression of packet classifiers,” in
ACM/IEEE ANCS, 2015.

[9] A. X. Liu, C. R. Meiners, and E. Torng, “Packet classification using
binary content addressable memory,” IEEE/ACM Transactions on Net-
working, vol. 24, no. 3, pp. 1295–1307, 2016.

[10] E. Spitznagel, D. E. Taylor, and J. S. Turner, “Packet classification using
extended tcams,” in IEEE ICNP, 2003.

[11] F. Zane, G. Narlikar, and A. Basu, “Coolcams: Power-efficient tcams
for forwarding engines,” in IEEE INFOCOM, 2003.

[12] B. Vamanan and T. Vijaykumar, “Treecam: decoupling updates and
lookups in packet classification,” in ACM CoNEXT, 2011.

[13] Y. Ma and S. Banerjee, “A smart pre-classifier to reduce power con-
sumption of tcams for multi-dimensional packet classification,” in ACM
SIGCOMM, 2012.

[14] X. Li, Y. Lin, and W. Li, “Greentcam: A memory-and energy-efficient
tcam-based packet classification,” in IEEE International Conference on
Computing, Networking and Communication, 2016.

[15] W. Li, X. Li, and H. Li, “Meet-ip: Memory and energy efficient tcam-
based ip lookup,” in IEEE ICCCN, 2017.

[16] H. Liu, “Efficient mapping of range classifier into ternary-cam,” in IEEE
Hot Interconnects, 2002.

[17] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms
for advanced packet classification with ternary cams,” ACM SIGCOMM
Computer Communication Review, vol. 35, no. 4, pp. 193–204, 2005.

[18] Y.-K. Chang, “A 2-level tcam architecture for ranges,” IEEE Transac-
tions on Computers, vol. 55, no. 12, pp. 1614–1629, 2006.

[19] H. Che, Z. Wang, K. Zheng, and B. Liu, “Dres: Dynamic range encoding
scheme for tcam coprocessors,” IEEE Transactions on Computers,
vol. 57, no. 7, pp. 902–915, 2008.

[20] A. Bremler-Barr and D. Hendler, “Space-efficient tcam-based classifi-
cation using gray coding,” IEEE Transactions on Computers, vol. 61,
no. 1, pp. 18–30, 2010.

[21] A. Bremler-Barr, D. Hay, and D. Hendler, “Layered interval codes for
tcam-based classification,” Computer Networks, vol. 56, no. 13, pp.
3023–3039, 2012.

[22] O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy, “Exact worst case
tcam rule expansion,” IEEE Transactions on Computers, vol. 62, no. 6,
pp. 1127–1140, 2012.

[23] Y.-K. Chang, C.-C. Su, Y.-C. Lin, and S.-Y. Hsieh, “Efficient gray-
code-based range encoding schemes for packet classification in tcam,”
IEEE/ACM Transactions on Networking, vol. 21, no. 4, pp. 1201–1214,
2012.

[24] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eugster,
“Sax-pac (scalable and expressive packet classification),” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 4, pp. 15–26,
2014.

[25] L. Schiff, Y. Afek, and A. Bremler-Barr, “Orange: Multi field openflow
based range classifier,” in ACM/IEEE ANCS, 2015.

[26] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Porat,
“Optimal in/out tcam encodings of ranges,” IEEE/ACM Transactions on
Networking, vol. 24, no. 1, pp. 555–568, 2016.

[27] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Hel-Or, “Encoding short
ranges in tcam without expansion: Efficient algorithm and applications,”

IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp. 835–850,
2018.

[28] W. Li, X. Liu, W. Le, H. Li, and H. Zhang, “A practical range encoding
scheme for tcams,” in ACM SIGCOMM Posters and Demos, 2019.

[29] D. Shah and P. Gupta, “Fast updating algorithms for tcam,” IEEE Micro,
vol. 21, no. 1, pp. 36–47, 2001.

[30] H. Song and J. Turner, “Fast filter updates for packet classification using
tcam,” in IEEE GLOBECOM, 2006.

[31] Y.-K. Chang, “Efficient multidimensional packet classification with fast
updates,” IEEE Transactions on Computers, vol. 58, no. 4, pp. 463–479,
2008.

[32] X. Wen and et al, “Ruletris: Minimizing rule update latency for tcam-
based sdn switches,” in IEEE ICDCS, 2016.

[33] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial order
theory for fast tcam updates,” IEEE/ACM Transactions on Networking,
vol. 26, no. 1, pp. 217–230, 2018.

[34] K. Qiu and et al, “Fastrule: Efficient flow entry updates for tcam-based
openflow switches,” IEEE Journal on Selected Areas in Communica-
tions, vol. 37, no. 3, pp. 484–498, 2019.

[35] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification
algorithms: From theory to practice,” in IEEE INFOCOM, 2009.

[36] B. Vamanan, G. Voskuilen, and T. Vijaykumar, “Efficuts: optimizing
packet classification for memory and throughput,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 207–218, 2011.

[37] W. Li and X. Li, “Hybridcuts: A scheme combining decomposition and
cutting for packet classification,” in IEEE Hot Interconnects, 2013.

[38] P. He, G. Xie, K. Salamatian, and L. Mathy, “Meta-algorithms for
software-based packet classification,” in IEEE ICNP, 2014.

[39] S. Hager, S. Selent, and B. Scheuermann, “Trees in the list: Accelerating
list-based packet classification through controlled rule set expansion,” in
ACM CoNEXT, 2014.

[40] G. Antichi, C. Callegari, A. W. Moore, S. Giordano, and E. Anastasi,
“Ja-trie: Entropy-based packet classification,” in IEEE HPSR, 2014.

[41] Z. Liu, X. Wang, B. Yang, and J. Li, “Bitcuts: Towards fast packet
classification for order-independent rules,” in ACM SIGCOMM Posters
and Demos, 2015.

[42] S. Yingchareonthawornchai, J. Daly, A. X. Liu, and E. Torng, “A sorted-
partitioning approach to fast and scalable dynamic packet classification,”
IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1907–1920,
2018.

[43] J. Daly and E. Torng, “Bytecuts: Fast packet classification by interior
bit extraction,” in IEEE INFOCOM, 2018.

[44] W. Li, X. Li, H. Li, and G. Xie, “Cutsplit: A decision-tree combining
cutting and splitting for scalable packet classification,” in IEEE INFO-
COM, 2018.

[45] S. Hager, P. John, S. Dietzel, and B. Scheuermann, “Rulebender: Tree-
based policy transformations for practical packet classification systems,”
Computer Networks, vol. 135, pp. 253–265, 2018.

[46] H. Li, T. Huang, T. Yang, W. Li, and G. Zhang, “A fast flow table engine
for open vswitch with high performance on both lookups and updates,”
in ACM SIGCOMM Posters and Demos, 2019.

[47] E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural packet classification,”
in ACM SIGCOMM, 2019.

[48] W. Jiang and V. K. Prasanna, “A memory-balanced linear pipeline
architecture for trie-based ip lookup,” in IEEE Hot Interconnects, 2007.

[49] Y. Qi and et al, “Towards high-performance flow-level packet processing
on multi-core network processors,” in ACM/IEEE ANCS, 2007.

[50] W. Jiang and V. K. Prasanna, “Field-split parallel architecture for high
performance multi-match packet classification using fpgas,” in ACM
SPAA, 2009.

[51] Y. Qi and et al, “Multi-dimensional packet classification on fpga: 100
gbps and beyond,” in IEEE FPT, 2010.

[52] W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet classifica-
tion on fpgas,” in ACM/SIGDA FPGA, 2009.

[53] J. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang, “Parasplit: A scalable
architecture on fpga for terabit packet classification,” in IEEE Hot
Interconnects, 2012.

[54] W. Jiang and V. K. Prasanna, “A fpga-based parallel architecture for
scalable high-speed packet classification,” in IEEE ASAP, 2009.

[55] T. Ganegedara and V. K. Prasanna, “Stridebv: Single chip 400g+ packet
classification,” in IEEE HPSR, 2012.

[56] W. Jiang and V. K. Prasanna, “Scalable packet classification on fpga,”
IEEE Transactions on Very Large Scale Integration Systems, vol. 20,
no. 9, pp. 1668–1680, 2011.

[57] B. Yang, J. Fong, W. Jiang, Y. Xue, and J. Li, “Practical multituple
packet classification using dynamic discrete bit selection,” IEEE Trans-
actions on Computers, vol. 63, no. 2, pp. 424–434, 2012.

[58] Y. R. Qu and V. K. Prasanna, “High-performance and dynamically
updatable packet classification engine on fpga,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 1, pp. 197–209, 2015.

[59] Y. R. Qu, H. H. Zhang, S. Zhou, and V. K. Prasanna, “Optimizing many-
field packet classification on fpga, multi-core general purpose processor,
and gpu,” in ACM/IEEE ANCS, 2015.

[60] S. Hager, D. Bendyk, and B. Scheuermann, “Partial reconfiguration and
specialized circuitry for flexible fpga-based packet processing,” in IEEE
ReConFig, 2015.

[61] Y.-K. Chang and C.-S. Hsueh, “Range-enhanced packet classification
design on fpga,” IEEE Transactions on Emerging Topics in Computing,
vol. 4, no. 2, pp. 214–224, 2015.

[62] C.-L. Hsieh and N. Weng, “Many-field packet classification for software-
defined networking switches,” in ACM/IEEE ANCS, 2016.

[63] A. Fiessler, S. Hager, B. Scheuermann, and A. W. Moore, “Hypafilter:
A versatile hybrid fpga packet filter,” in ACM/IEEE ANCS, 2016.

[64] A. Fiessler, C. Lorenz, S. Hager, B. Scheuermann, and A. W. Moore,
“Hypafilter+: Enhanced hybrid packet filtering using hardware assisted
classification and header space analysis,” IEEE/ACM Transactions on
Networking, vol. 25, no. 6, pp. 3655–3669, 2017.

[65] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using
tuple space search,” ACM SIGCOMM Computer Communication Review,
vol. 29, no. 4, pp. 135–146, 1999.

[66] B. Pfaff and et al, “The design and implementation of open vswitch,”
in USENIX NSDI, 2015.

[67] J. Daly and et al, “Tuplemerge: Fast software packet processing for
online packet classification,” IEEE/ACM Transactions on Networking,
2019.

[68] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know about
sdn flow tables,” in Springer International Conference on Passive and
Active Network Measurement, 2015.

[69] T. Yang and et al, “Fast openflow table lookup with fast update,” in
IEEE INFOCOM, 2018.

[70] D. E. Taylor and J. S. Turner, “Classbench: A packet classification
benchmark,” IEEE/ACM Transactions on Networking, vol. 15, no. 3,
pp. 499–511, 2007.

[71] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” in ACM SIGCOMM, 1998.

[72] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in IEEE Hot Interconnects, 1999.

[73] A. Feldman and S. Muthukrishnan, “Tradeoffs for packet classification,”
in IEEE INFOCOM, 2000.

[74] T. Y. Woo, “A modular approach to packet classification: Algorithms
and results,” in IEEE INFOCOM, 2000.

[75] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core
routers: Is there an alternative to cams?” in IEEE INFOCOM, 2003.

[76] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” in ACM SIGCOMM, 2003.

[77] T. Lakshman and D. Stiliadis, “High-speed policy-based packet forward-
ing using efficient multi-dimensional range matching,” ACM SIGCOMM
Computer Communication Review, vol. 28, no. 4, pp. 203–214, 1998.

[78] P. Gupta and N. McKeown, “Packet classification on multiple fields,”
ACM SIGCOMM Computer Communication Review, vol. 29, no. 4, pp.
147–160, 1999.

[79] F. Baboescu and G. Varghese, “Scalable packet classification,” ACM
SIGCOMM Computer Communication Review, vol. 31, no. 4, pp. 199–
210, 2001.

[80] D. E. Taylor and J. S. Turner, “Scalable packet classification using
distributed crossproducing of field labels,” in IEEE INFOCOM, 2005.

[81] F. Geraci, M. Pellegrini, P. Pisati, and L. Rizzo, “Packet classification via
improved space decomposition techniques,” in IEEE INFOCOM, 2005.

[82] W. Li, D. Li, Y. Bai, W. Le, and H. Li, “Memory-efficient recursive
scheme for multi-field packet classification,” IET Communications,
vol. 13, no. 9, pp. 1319–1325, 2019.

[83] H. Lim and S. Y. Kim, “Tuple pruning using bloom filters for packet
classification,” IEEE Micro, vol. 30, no. 3, pp. 48–59, 2010.

[84] G. Brebner, “Packets everywhere: The great opportunity for field pro-
grammable technology,” in IEEE FPT, 2009.

[85] G. Brebner and W. Jiang, “High-speed packet processing using recon-
figurable computing,” IEEE Micro, vol. 34, no. 1, pp. 8–18, 2014.

[86] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The p4-netfpga
workflow for line-rate packet processing,” in ACM/SIGDA FPGA, 2019.

[87] L. Linguaglossa and et al, “Survey of performance acceleration tech-
niques for network function virtualization,” Proceedings of the IEEE,
vol. 107, no. 4, pp. 746–764, 2019.

[88] S. Pontarelli and et al, “Flowblaze: Stateful packet processing in
hardware,” in USENIX NSDI, 2019.

