

TabTree: A TSS-assisted Bit-selecting Tree Scheme for Packet Classification with Balanced Rule Mapping

Wenjun Li^{*+‡}, Tong Yang[‡], Yeim-Kuan Chang[§], Tao Li^P and Hui Li^{*+}

*School of Electronic and Computer Engineering, Peking University, *Peng Cheng Laboratory, *EECS, Peking University, [§]NCKU, ^PNUDT

ACM/IEEE ANCS 2019

Cambridge, UK, September 24, 2019

Outline

- Background
- Motivation
- Proposed Algorithm
- Evaluation
- Conclusion

Packet Classification

A Little Review on Related Work

Key for policy enforcement in packet forwarding

Well-known taxonomy from David E. Taylor^[CSUR 2005]

Notes: adjacent techniques are related; hybrid techniques overlap quadrant boundaries; * denotes a seminal technique **Our proposed TabTree: A hybrid approach**

A Little Review on Decision Tree

Decision-tree construction in packet classification

- 1. Rule table matching \leftrightarrow Point location in geometric space
- 2. Partition the searching space into sub-spaces recursively
 - Root node: Whole searching space containing all rules
 - Internal node: #rule covered by sub-space > a predefined number of rules
 - Leaf node: #rule covered by sub-space <= a predefined number of rules</p>

Two major threads of building decision-trees

Equal-sized cutting & Equal-dense splitting

Two Major Threads in Decision-trees

Equal-dense splitting based point-comparing

- Unequal-sized sub-spaces containing nearly equal number of rules
- e.g., HyperSplit, ParaSplit, SmartSplit, PartitionSort, etc.
- Equal-sized cutting based bit-selecting
 - Separate the searching space into many equal-sized sub-spaces
 - Two major threads based on bit-selecting methods
 - Select orderly from the most to the least significant bits, such as HiCuts
 - Select **discretely** among arbitrary field bits, such as ModularPC

A Little Review on TSS

TSS (Tuple Space Search) for packet classification

Partition rules into a set of hash tables based on prefix length

Tuple 1: (3) Priority:	Action Al A2	Field Y * *	Field X 111* 110*	Rule # R1 R2	Action	Field Y	Field X	ule #
Tuple 2: (0	Action	Field Y	Field X	Rule #	A1	*	111*	1
_	A3	010*	*	R3	A2	*	110*	2 3
Priority:	A4	011*	*	R4	A3	010*	*	
Tuple 3: (2	4	179 11 177	T 9 11 37		A4	011*	*	
– • •	Action	Field Y	Field X	Rule #	A5	10**	01**	
Priority:	A5	10**	01**	R5	<i>A6</i>	*	*	
Tuple 4: (0	Action	Field Y	Field X	Rule #				
Priority:	A6	*	*	R6				

PSTSS (Priority Sorting TSS) used in Open vSwitch

Introduce a pre-computed priority for each tuple space, so that each search can terminate as soon as a match is found

TSS can separate rules into subsets without any replications.

Well studied

Why yet another decision tree?

Why Yet Another Decision Tree?

Well studied: The PAST two decades?

But still far away from SDN: The LOST two decades!

The popular Open vSwitch still uses a variant of TSS (proposed in **1999**) for its table lookups, which is less efficient than decision trees on lookups. The primary reason is its good support for fast rule updates.

What is the Performance of Software based Packet Classifications?

Classification performance without caching: A few Gbps

Thus, software based packet classifications are also still far away from high performance network.

Thus, Can We...

□ Motivation 1: for rule updates

- **Can we use decision trees for packet classification in OVS?**
 - Can we build trees that also achieve high performance on updates?
 - ✓ Can we avoid rule replications in decision trees completely?

□ Motivation 2: for FPGA acceleration

- **Can we use FPGA to accelerate packet classification in OVS?**
 - Can we build trees that are favorable for FPGA implementations?
 - Can we build decision trees that are balanced and depth bounded?

Can we design a tree scheme for packet classification in SDN, which is not only suitable for fast rule updates, but also desirable for FPGA implementations and optimizations?

Part 3: Proposed Algorithm

TabTree

TSS-assisted bit-selecting Tree

Ideas & Challenges

Decision tree

- ✓ Pros: Fast packet classification
- ✓ **Cons:** Slow rule update

TSS

- ✓ **Pros:** Fast rule update
- ✓ **Cons:** Slow packet classification

To foster the strengths and circumvent the weaknesses of decision tree and TSS, the idea directly perceived is to design a heterogeneous framework that can take advantage of both decision tree and TSS approaches: TSS-assisted Tree

Difficulties and challenges

- 1) Low memory footprint: to be accommodated into the small Block RAM;
- 2) Avoid rule replication: to support fast rule updates;
- 3) Balanced tree: to reduce memory accesses for high-throughput;
- 4) Bounded tree: to be suitable for pipeline optimizations on FPGA.

The Framework of TabTree

□ A two-stage framework with heterogeneous algorithms

□ Most rules have at least one *small field* [HybridCuts]

□ Partition rules into subsets based on *small fields* [CutSplit]

Observations on partitioned rules

There are a few selectable bits in small rule fields

TABLE I

For a W-bit wide field F_i with the threshold value of 2^K , F_i is a small field if and only if there are no wildcard (*) at its most significant W-K bits, we call these W-K bits as selectable bits.

For *small range fields*: False range encoding, refer to the paper TABLE II

EXA	MPLE RULI	e Set with Two	IPv4 Address F	TIELDS			PARTITIONED RULES WITH	SMALL	Dst_addr Field
rule id	priority	src_addr field	dst_addr field	action		rul	src_addr ($T_{src_addr} = 2^{25}$)	ds	t_addr (T _{dst_addr} = 2^{25})
R_1	14	228.128.0.0/9	0.0.0/0	action1		id	1-32th bits	33-39th	
R_2	13	223.0.0.0/9	0.0.0/0	action2		$R_{\rm f}$		* 1010111	
R_3	12	0.0.0/1	175.0.0.0/8	action3	Partition		0		-
R_4	11	0.0.0/1	225.0.0.0/8	action4	Farmon	R_4	0**********************	[*] 1110000	1***********
R_5	10	0.0.0/2	225.0.0.0/8	action5		R_5	00***********************	1110000	1******
R_6	9	128.0.0.0/1	123.0.0.0/8	action6		R_{6}	1**********	0111101	1******
R_7	8	128.0.0.0/1	37.0.0/8	action7		R_7	1**********	0010010	1********
R_8	7	0.0.0/0	123.0.0/8	action8		R_8	and a star and and and and and and and and and a start and a	• 0111101	1 *****
R_9	6	178.0.0.0/7	0.0.0/1	action9			THE REPORT OF A DESCRIPTION OF A DESCRIP	* 1010110	
R_{10}	5	0.0.0/1	172.0.0.0/7	action10			0 0*********		
R_{11}	4	0.0.0/1	226.0.0.0/7	action11		R_1	[0************************************	* 1110001	**********
R_{12}	3	128.0.0.0/1	120.0.0/7	action12		R_1	2 1**********************	[*] 0111100	ગેર
R_{13}	2	128.0.0.0/2	120.0.0/7	action13		R_1	3 10*****************************	0111100	******
R_{14}	1	128.0.0.0/1	38.0.0.0/7	action14		R_1	L 1************************************	0010011	******
	_					_		-	

Each selectable bit can map rules into at most two rule subsets without any rule replications

Step 2: Balanced Bit-selecting

The key is how to select the most distinguishing *selectable bits* in each tree node, so that rules can be mapped into its children nodes in the most balanced fashion.

- □ Brute force strategy: optimal but slow
 - Find at most b bits at one-time from *selectable bits*, which partition rules into $n = 2^b$ subsets in the most balanced fashion

$$costFunc(b \ bits) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x)^2}{n}}, where \ x = \frac{M}{n}$$
 (1)

- **Greedy strategy: good and fast**
 - A local optimal solution, where the "good" bits are selected one by one recursively

imbalance(bit v) = |#ruleLChild - #ruleRChild| (2)

Step 3: TSS Assistance

Stop bit-selecting progress in one of the following cases

- tree depth achieves the predefined maximum value
- number of rules in the tree node is less than *binth*
- remaining unselected rule bits share same values and cannot separate rules from each other
- further bit-selecting will led to rule replications due to wildcards

Resort to other more effective methods for the following tree constructions

- After balanced pre-mappings, the number of rules in the terminal nodes (i.e., leaf nodes) has been significantly reduced
- To exploit this favorable property, we use linear search (#rules \leq *binth*) or PSTSS (#rules > *binth*) to facilitate tree constructions.

□ An example rule set with two IPv4 address fields

Rule id	src_addr field	dst_addr field	Rule id	src_addr field	dst_addr field
R_1	228.128.0.0/9	0.0.0/0	R_8	0.0.0/0	123.0.0/8
R_2	223.0.0.0/9	0.0.0/0	R_{g}	178.0.0.0/7	0.0.0/1
R_3	0.0.0/1	175.0.0/8	<i>R</i> ₁₀	0.0.0/1	172.0.0.0/7
R_4	0.0.0/1	225.0.0.0/8	<i>R</i> ₁₁	0.0.0/1	226.0.0.0/7
R_5	0.0.0/2	225.0.0.0/8	<i>R</i> ₁₂	128.0.0.0/1	120.0.0/7
R_6	128.0.0/1	123.0.0/8	<i>R</i> ₁₃	128.0.0.0/2	120.0.0/7
<i>R</i> ₇	128.0.0/1	37.0.0/8	<i>R</i> ₁₄	128.0.0/1	38.0.0.0/7

Two partitioned subsets, where threshold $T = (2^{25}, 2^{25})$

The 1st subset with small destination address field

Rule id	src_addr field (1-32th rule bits)	dst_addr field (33-64th rule bits)
R ₃	0*****	1010111 1******************************
R_4	0*****	1110000 1******************************
R_5	00**************	1110000 1******************************
R_6	1*****	0111101 1******************************
R ₇	1*****	0010010 1******************************
R_8	*****	0111101 1******************************
<i>R</i> ₁₀	0*****	1010110 *******************************
<i>R</i> ₁₁	0*****	1110001 *****************
<i>R</i> ₁₂	1*****	0111100 *****************
<i>R</i> ₁₃	10****************	0111100 ***************
<i>R</i> ₁₄	1*****	0010011 ****************

The 2nd subset with small source address field

Rule id	src_addr field (1-32th rule bits)	dst_addr field (33-64th rule bits)
R_1	1110010 01*****************************	*****
R_2	1101111 10*****************************	*****
R_9	1011001 ***************	0*****

TSS-assisted decision tree for 11 rules in the 1st subset

Preliminary Evaluation

Experiment Conclusion

Experimental Setup

- **Tested with**
 - ClassBench
 - Generate ACL & FW & IPC 1k, 10k, 100K
 - Generate 12 rule sets based on 12 seed files
- **Compared with**
 - PSTSS: used in Open vSwitch for flow table lookups
 - CutSplit: the latest cutting based decision tree
 - PartitionSort: the latest splitting based decision tree

Primary metrics

- Number of subsets
- Memory footprint
- Memory access
- Update performance

Our implementation of TabTree will be available in http://wenjunli.com/TabTree/

#Subsets & Memory Footprint

TABLE IIIAverage Subsets & Memory Footprint

Algorithms	rules	#Subsets			Memory footprint (MB		
Aigoritimis	Tules	1k	10k	100k	1k	10k	100k
	ACL	3.8	3.8	3.4	0.03	0.25	2.34
TabTree	FW	4	4	4	0.03	0.21	2.44
	IPC	3.5	3.5	3.5	0.03	0.28	2.31
	ACL	144.4	230.2	267	0.05	0.44	4.66
PSTSS	FW	69.8	95.6	99.8	0.04	0.45	4.31
	IPC	114.5	164	185.5	0.04	0.48	4.92
	ACL	11	21.6	26.8	0.05	0.49	5.22
PartitionSort	FW	19.4	24.4	34.4	0.05	0.51	4.88
	IPC	10	11.5	12	0.05	0.54	5.57
	ACL	3.8	3.8	3.4	0.04	1.28	11.52
CutSplit	FW	4	4	4	0.04	4.17	18.29
	IPC	3.5	3.5	3.5	0.04	3.29	26.86

Even for rule sets up to 100k entries, TabTree can still construct decision trees in a few MBytes, small enough to be accommodated into the Block RAM of middle-end FPGAs, such as Xilinx Virtex-7 FPGAs.

Memory Access

□ For simplicity, we think traversing a decision tree node, a rule or a tuple table as one memory access

Update Performance

Fig. 6. Update performance.

Preliminary experimental evaluations show that, a very limited number of shallow trees can be generated with linear memory consumption in TabTree, which is also suitable for fast rule updates. More evaluations on FPGA will be given in our future work.

Conclusion

Future Work

Conclusion

TabTree (TSS-assisted **bit-selecting Tree**)

- A framework consisting of heterogeneous algorithms
- Novel observations on *small fields*
- Two heuristic balanced bit-selecting
- **TSS** to assist decision tree constructions

Future Work

- Self-adaptive rule partition instead of based on *small fields*
- Self-adaptive bit-selecting instead of heuristic algorithms
- Design rule caching algorithm for TabTree
- Implement TabTree on FPGA

Thank you !

Web: <u>http://www.wenjunli.com</u> E-mail: <u>wenjunli@pku.edu.cn</u>

BTW: I am now seeking a postdoctoral position after 2020. Feel free to contact with me if you have a suitable position.