
TabTree: A TSS-assisted Bit-selecting Tree Scheme for

Packet Classification with Balanced Rule Mapping

Wenjun Li*†‡, Tong Yang‡, Yeim-Kuan Chang§, Tao Li⁋ and Hui Li*†

*School of Electronic and Computer Engineering, Peking University,
†Peng Cheng Laboratory, ‡EECS, Peking University, §NCKU, ⁋NUDT

ACM/IEEE ANCS 2019

Cambridge, UK, September 24, 2019

 Background

 Motivation

 Proposed Algorithm

 Evaluation

 Conclusion

Outline

School of Electronic and Computer Engineering, Peking University

1

Part 1：Background

School of Electronic and Computer Engineering, Peking University

Packet Classification

A Little Review on Related Work

School of Electronic and Computer Engineering, Peking University

 Key for policy enforcement in packet forwarding

 Firewall, QoS, OpenFlow, P4, etc.

Packet Classification

Forwarding Engine

Header

Classifier (Rule Database)

Predicate Action

Incoming Packet

Payload

Fibre Optics Fibre Optics

Router / Firewall

Header

Outgoing Packet

Payload

Flow Classification

An example OpenFlow 1.0 classifier/flow table (12-tuple) Action

r1

Ingress

Port

Ether

src

Ether

dst

Ether

type

VLAN

id

VLAN

priority

Action1

3 * * 2048 * *

IP

src

IP

dst

IP

proto

IP

ToS bits

TCP/UDP

Src Port

TCP/UDP

Dst Port

15.25.70.8/30 18.15.125.3/28 0x11/0xff 1 1024 : 65535 80
…

exact
match match

any

match
range

School of Electronic and Computer Engineering, Peking University

Existing Solutions

 Well-known taxonomy from David E. Taylor[CSUR 2005]

 Our proposed TabTree: A hybrid approach

Notes: adjacent techniques are related; hybrid techniques

overlap quadrant boundaries; ∗ denotes a seminal technique

School of Electronic and Computer Engineering, Peking University

A Little Review on Decision Tree

 Decision-tree construction in packet classification

 1. Rule table matching ↔ Point location in geometric space

 2. Partition the searching space into sub-spaces recursively
 Root node: Whole searching space containing all rules

 Internal node: #rule covered by sub-space > a predefined number of rules

 Leaf node: #rule covered by sub-space <= a predefined number of rules

 Two major threads of building decision-trees

 Equal-sized cutting & Equal-dense splitting

R2 R1R6

0000 1111

0000

1111

R5

R4

R3

Field X

Fi
el

d
 Y

Rule # Field X Field Y Action

R1 111* * A1

R2 110* * A2

R3 * 010* A3

R4 * 011* A4

R5 01** 10** A5

R6 * * A6

Leaf 2
R3,R4,R5,R6

Leaf 4
R2,R3,R4,R6

Cut-X:4

Leaf 3
R3,R4,R6

Leaf 1
R3,R4,R6

Leaf 5
R1,R3,R4,R6

Cut-X:2

HiCuts-4

00

Leaf 2
R3,R4,R5,R6

Leaf 4
R2,R3,R4,R6

Cut-X:
4 cuts

Leaf 3
R3,R4,R6

Leaf 1
R3,R4,R6

01 10

Leaf 5
R1,R3,R4,R6

Cut-X:
2 cuts

0 1

11

Select the 1st & 2nd
bits in filed X

Select the 3rd
bit in filed X

School of Electronic and Computer Engineering, Peking University

Two Major Threads in Decision-trees

 Equal-dense splitting based point-comparing

 Unequal-sized sub-spaces containing nearly equal number of rules

 e.g., HyperSplit, ParaSplit, SmartSplit, PartitionSort, etc.

 Equal-sized cutting based bit-selecting

 Separate the searching space into many equal-sized sub-spaces

 Two major threads based on bit-selecting methods

 Select orderly from the most to the least significant bits, such as HiCuts

 Select discretely among arbitrary field bits, such as ModularPC

Split-X
13

Split-Y
5

X <= 13

Split-Y
5

X > 13

Y <= 5 Y > 5 Y <= 5 Y > 5

Leaf 1
R2,R3,

R6

Leaf 2
R2,R4,
R5,R6

Leaf 3
R1,R3,

R6

Leaf 4
R1,R4,

R6

HiCuts-4HyperSplit-4

R2 R1R6

0000 1111

0000

1111

R5

R4

R3

Field X

Fi
el

d
 Y

13

5

School of Electronic and Computer Engineering, Peking University

A Little Review on TSS

 TSS (Tuple Space Search) for packet classification

 Partition rules into a set of hash tables based on prefix length

Rule # Field X Field Y Action

R1 111* * A1

R2 110* * A2

R3 * 010* A3

R4 * 011* A4

R5 01** 10** A5

R6 * * A6

Rule # Field X Field Y Action

R1 111* * A1

R2 110* * A2

Rule # Field X Field Y Action

R3 * 010* A3

R4 * 011* A4

Rule # Field X Field Y Action

R5 01** 10** A5

Rule # Field X Field Y Action

R6 * * A6

Tuple 1: (3, 0)

Tuple 2: (0, 3)

Tuple 3: (2, 2)

Tuple 4: (0, 0)

TSS can separate rules into subsets without any replications.

 PSTSS (Priority Sorting TSS) used in Open vSwitch

 Introduce a pre-computed priority for each tuple space, so that

each search can terminate as soon as a match is found

Priority: 6

Priority: 4

Priority: 2

Priority: 1

2

Part 2：Motivation

School of Electronic and Computer Engineering, Peking University

Well studied

Why yet another decision tree?

Why Yet Another Decision Tree?

 Well studied: The PAST two decades?

 But still far away from SDN: The LOST two decades!
 The popular Open vSwitch still uses a variant of TSS (proposed in 1999)

for its table lookups, which is less efficient than decision trees on

lookups. The primary reason is its good support for fast rule updates.

HiCuts

[HotI]

1999 2003

HyperCuts

[SIGCOMM]

2009

ParaSplit

[HotI]

2010 2012

HyperSplit

[INFOCOM]

EffiCuts

[SIGCOMM]

2013 2014

SmartSplit

[ICNP]

20182016

PartitionSort

[ICNP]

MC-SBC

[ANCS] CutSplit

[INFOCOM]

ByteCuts

[INFOCOM]

NeuroCuts

[SIGCOMM]

2019

School of Electronic and Computer Engineering, Peking University

HybridCuts

[HotI]

2000

ModularPC

[INFOCOM]

 Classification performance without caching: A few Gbps

School of Electronic and Computer Engineering, Peking University

What is the Performance of

Software based Packet Classifications?

Thus, software based packet classifications are also still

far away from high performance network.

 PSTSS[NSDI 2015]
 CutSplit[INFOCOM 2018]

Thus, Can We…

 Motivation 2: for FPGA acceleration

 Can we use FPGA to accelerate packet classification in OVS?

 Can we build trees that are favorable for FPGA implementations?

 Can we build decision trees that are balanced and depth bounded?

 Motivation 1: for rule updates

 Can we use decision trees for packet classification in OVS?

 Can we build trees that also achieve high performance on updates?

 Can we avoid rule replications in decision trees completely?

Can we design a tree scheme for packet classification in SDN,

which is not only suitable for fast rule updates, but also

desirable for FPGA implementations and optimizations?

School of Electronic and Computer Engineering, Peking University

TabTree

3

TSS-assisted bit-selecting Tree

Part 3：Proposed Algorithm

School of Electronic and Computer Engineering, Peking University

Ideas & Challenges

School of Electronic and Computer Engineering, Peking University

 Decision tree
 Pros: Fast packet classification

 Cons: Slow rule update

 TSS
 Pros: Fast rule update

 Cons: Slow packet classification

To foster the strengths and circumvent the weaknesses of decision tree and

TSS, the idea directly perceived is to design a heterogeneous framework

that can take advantage of both decision tree and TSS approaches:

TSS-assisted Tree

 Difficulties and challenges
 1) Low memory footprint: to be accommodated into the small Block RAM;

 2) Avoid rule replication: to support fast rule updates;

 3) Balanced tree: to reduce memory accesses for high-throughput;

 4) Bounded tree: to be suitable for pipeline optimizations on FPGA.

The Framework of TabTree

School of Electronic and Computer Engineering, Peking University

 A two-stage framework with heterogeneous algorithms

 Key Steps of TabTree

 1) Rule partition; 2) Balanced bit-selecting; 3) TSS assistance

Rule partition

Balanced bit-selecting

TSS assistance

Step 1: Rule Partition

 Most rules have at least one small field [HybridCuts]

 Partition rules into subsets based on small fields [CutSplit]

School of Electronic and Computer Engineering, Peking University

Observations on partitioned rules

 There are a few selectable bits in small rule fields

 For a W-bit wide field Fi with the threshold value of 2K, Fi is a

small field if and only if there are no wildcard (*) at its most

significant W-K bits, we call these W-K bits as selectable bits.

 For small range fields: False range encoding, refer to the paper

 Each selectable bit can map rules into at most two rule

subsets without any rule replications

School of Electronic and Computer Engineering, Peking University

Partition

Step 2: Balanced Bit-selecting

 Brute force strategy: optimal but slow

 Find at most b bits at one-time from selectable bits, which

partition rules into n = 2b subsets in the most balanced fashion

The key is how to select the most distinguishing selectable

bits in each tree node, so that rules can be mapped into its

children nodes in the most balanced fashion.

 Greedy strategy: good and fast

 A local optimal solution, where the “good” bits are selected one

by one recursively

School of Electronic and Computer Engineering, Peking University

Step 3: TSS Assistance

 Stop bit-selecting progress in one of the following cases

 tree depth achieves the predefined maximum value

 number of rules in the tree node is less than binth

 remaining unselected rule bits share same values and cannot

separate rules from each other

 further bit-selecting will led to rule replications due to wildcards

 Resort to other more effective methods for the following

tree constructions

 After balanced pre-mappings, the number of rules in the terminal

nodes (i.e., leaf nodes) has been significantly reduced

 To exploit this favorable property, we use linear search (#rules ≤

binth) or PSTSS (#rules > binth) to facilitate tree constructions.

School of Electronic and Computer Engineering, Peking University

A Working Example

 An example rule set with two IPv4 address fields

Rule

id

src_addr

field

dst_addr

field

Rule

id

src_addr

field

dst_addr

field

R1 228.128.0.0/9 0.0.0.0/0 R8 0.0.0.0/0 123.0.0.0/8

R2 223.0.0.0/9 0.0.0.0/0 R9 178.0.0.0/7 0.0.0.0/1

R3 0.0.0.0/1 175.0.0.0/8 R10 0.0.0.0/1 172.0.0.0/7

R4 0.0.0.0/1 225.0.0.0/8 R11 0.0.0.0/1 226.0.0.0/7

R5 0.0.0.0/2 225.0.0.0/8 R12 128.0.0.0/1 120.0.0.0/7

R6 128.0.0.0/1 123.0.0.0/8 R13 128.0.0.0/2 120.0.0.0/7

R7 128.0.0.0/1 37.0.0.0/8 R14 128.0.0.0/1 38.0.0.0/7

School of Electronic and Computer Engineering, Peking University

A Working Example

School of Electronic and Computer Engineering, Peking University

 Two partitioned subsets, where threshold T = (225, 225)

 The 1st subset with small destination address field

Rule id src_addr field (1-32th rule bits) dst_addr field (33-64th rule bits)

R1 1110010 01*********************** ********************************

R2 1101111 10*********************** ********************************

R9 1011001 ************************* 0*******************************

Rule id src_addr field (1-32th rule bits) dst_addr field (33-64th rule bits)

R3 0******************************* 1010111 1************************

R4 0******************************* 1110000 1************************

R5 00****************************** 1110000 1************************

R6 1******************************* 0111101 1************************

R7 1******************************* 0010010 1************************

R8 ******************************** 0111101 1************************

R10 0******************************* 1010110 *************************

R11 0******************************* 1110001 *************************

R12 1******************************* 0111100 *************************

R13 10****************************** 0111100 *************************

R14 1******************************* 0010011 *************************

 The 2nd subset with small source address field

A Working Example

 TSS-assisted decision tree for 11 rules in the 1st subset

R3,R4,R5,R6,R7,R8,

R10,R11,R12,R13,R14

00 11

R4,R5,R7 R11,R14 R10,R12,R13 R3,R6,R8

01 10

Selected Bits:

37th & 39th

33th 33th 33th 33th

R7

0

R4,R5

1

R14

0

R11

1 0 1

R10R12,R13

0 1

R3R6,R8

Leaf Node:

Linear Search

Leaf Node:

PSTSS Search

School of Electronic and Computer Engineering, Peking University

Preliminary Evaluation

4

Experiment Conclusion

Part 4：Evaluation

School of Electronic and Computer Engineering, Peking University

Experimental Setup

School of Electronic and Computer Engineering, Peking University

 Tested with
 ClassBench
 Generate ACL & FW & IPC 1k, 10k, 100K

 Generate 12 rule sets based on 12 seed files

 Compared with
 PSTSS: used in Open vSwitch for flow table lookups
 CutSplit: the latest cutting based decision tree

 PartitionSort: the latest splitting based decision tree

 Primary metrics
 Number of subsets
 Memory footprint
 Memory access
 Update performance

Our implementation of TabTree will be available in http://wenjunli.com/TabTree/

#Subsets & Memory Footprint

School of Electronic and Computer Engineering, Peking University

Even for rule sets up to 100k entries, TabTree can still construct

decision trees in a few MBytes, small enough to be accommodated into

the Block RAM of middle-end FPGAs, such as Xilinx Virtex-7 FPGAs.

Memory Access

School of Electronic and Computer Engineering, Peking University

 For simplicity, we think traversing a decision tree node,
a rule or a tuple table as one memory access

Update Performance

School of Electronic and Computer Engineering, Peking University

Preliminary experimental evaluations show that, a very limited number

of shallow trees can be generated with linear memory consumption in

TabTree, which is also suitable for fast rule updates. More evaluations

on FPGA will be given in our future work.

Conclusion

5

Future Work

Part 5：Conclusion

School of Electronic and Computer Engineering, Peking University

Conclusion

TabTree (TSS-assisted bit-selecting Tree)
 A framework consisting of heterogeneous algorithms

 Novel observations on small fields

 Two heuristic balanced bit-selecting

 TSS to assist decision tree constructions

Future Work
 Self-adaptive rule partition instead of based on small fields

 Self-adaptive bit-selecting instead of heuristic algorithms

 Design rule caching algorithm for TabTree

 Implement TabTree on FPGA

School of Electronic and Computer Engineering, Peking University

Web: http://www.wenjunli.com

E-mail: wenjunli@pku.edu.cn

Thank you！

School of Electronic and Computer Engineering, Peking University

BTW: I am now seeking a postdoctoral position after 2020.

Feel free to contact with me if you have a suitable position.

http://www.wenjunli.com/
mailto:wenjunli@pku.edu.cn

