

40th IEEE International Conference on Data Engineering

Utrecht, Netherlands | 13th - 17th May

BitMatcher: Bit-level Counter Adjustment for Sketches

Qilong Shi, Chengjun Jia, Wenjun Li*, Zaoxing Liu, Tong Yang, Jianan Ji, Gaogang Xie, Weizhe Zhang, and Minlan Yu

Background

a data stream

$$f_1 = 2$$

 $f_2 = 1$
 $f_3 = 2$
 $f_4 = 3$

Dedicated Platforms: Network Switches FPGA/ASIC

Frequency EstimationHeavy Hitter DetectionHeavy Change DetectionItem Size DistributionEntropy Estimation

.....

Approximate Algorithms

in data stream processing

- Exact & nearly-exact solutions
 Idea: Store all items in the stream and build many indexes.
 Weakness: Not practical for dedicated soft/hardware platforms.
 Huge data volume (GBs): up to billions of items (network packets) in the 1-second time window.
 Small memory size (<30 MB): FPGA, ASIC and Switches.

(Sketch)

- Approximate ______ memory efficient & tolerable errors
 algorithms ______ Including: CM sketch, Bloom filter and many kinds of sketches......

Prior art --- CM Sketch

Insertion: when a new item e comes **Query:** query for the frequency of the item e **Deletion:** delete item e

Common sketch

Hierarchical

Augmented Sketch

Pros: hot items always in the filter. **Cons:** exchange greatly reduce speed.

Elastic Sketch

Pros: No exchange **/** very high speed. **Cons:** hot item may be accidentally expelled.

Pyramid Sketch

Hierarchical sketch outline

Self-adjusting

Prior art --- SALSA

Pros

Finer segmentation inside the counter

bigh accuracy

ndic	es 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
/alue	es 7	0	3	0		21	773		0	97	8	13	0	20	483	33
Merg	ges O	0	0	0	1	1	1	0	0	0	1	0	0	0	1	0
0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7
0	255	3	0	655	33	95	11		0	255	3	0	655	533	95	11
0	0	0	0	1	0	0	0		0	0	0	0	1	0	0	0
•	-	•	•	-	•	•	•		•	•	•	•	-	•	•	•
•				$\langle x,3\rangle$	arrive	s, h(x) = 1	1		Ū			$\langle x, 3 \rangle$	arrive	s, h(x) = 1
2!	58	3		- (<i>x</i> ,3) 655	arrive	s, h(x) 95) = 1 11	l	25	8	3	0	- (x,3) 655	arrive	s, h(x) 95) = 1 11
2.	58 0	3 0		2 (x,3) 655 1	arrive	s, h(x 95 0) = 1 11 0	ł	25 1	8	3 0	0	- (<i>x</i> , 3) 655 1	arrive	s, h(x) 95 0) = 1 11 0
2! 1	58 0	3		 4x, 3 655 1 4y, 5 	arrive 33 0 arrive	s, h(x 95 0 s, h(y) = 1 11 0) = 5	ļ	258 1	B 0	3 0	0	<pre>4 (x, 3) 655 1 (y, 5)</pre>	arrive	s, h(x 95 0 s, h(y) = 1 11 0) = 5
2! 1 2!	58 0 58	3 0 3		 4x, 3 655 1 (y, 5) 	arrive 33 0 arrive 656	s, h(x 95 0 s, h(y)) = 1 11 0) = 5		258 1	B 0 8	3 0 3	000000000000000000000000000000000000000	- (x, 3) 655 1 (y, 5)	arrive	s, h(x 95 0 s, h(y 538) = 1 11 0) = 5

Cons

additional bitmaps&complex operations

reduce speed

(a) Sum merging of counters

(b) Max merging of counters

Self-adjusting

Prior art --- DHS (Dynamic Hierarchical Sketch)

Pros

Adjustments are limited to a single bucket.

bigh accuracy and speed

Cons

The adjusting strategy is limited to three types of counters: 8/12/16 bits.

can`t store when the data traffic is heavy.
 too large adjustment granularity.

BitMatcher Framework

Data Structure

BitMatcher Framework

State transition table

DHS: bucket size $\neq 64k$ bits

BitMatcher Framework

Design ideas

``Cuckoo kick`` are used to balance the load among buckets.
``Global coordination``

Decode with the ``flag bits`` in the bucket.

Accurate to 1-bit space allocation. **High accuracy and memory saving**

Experimental Results

Settings

Experimental Results

Frequency Estimation

Experimental Results

Frequency Estimation

	0.01 MB	0.1 MB	1 MB	10 MB				
BM	\checkmark	2.0 √	1.8 √	1.6				
EL		2.3	1.8	1.6				
SALSA		2.4	2.0	1.5				
AS		2.7	2.0	1.4				
CM		2.6	2.0	1.4				

Experimental Results Heavy Hitter Detection

Experimental Results Heavy Change Detection

Experimental Results Item size distribution

Experimental Results Entropy Estimation

FPGA Implementation

Results

Bitmatcher can achieve **192Mpps** at most with **3%** FPGA resources.

Algorithms	Logics	RAM	Max Frequency
Elastic Sketch	2,939	1,978,368 bits	162.6 MHz
BitMatcher	11,639	1,216,512 bits	192.3 MHz

BitMatcher: a bit-level counter adjustment that can perfectly match the data stream distribution.

Small memory cost, high speed, high accuracy, and good soft / hardware scalability.

We use BitMatcher to process five typical measurement tasks.

We implemented BitMatcher on CPU and FPGA. All codes are released at Github.

