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Abstract: Multi-field packet classification is not only an indispensable and challenging functionality of existing network devices,
but it also appears as flow tables lying at the heart of the forwarding plane of software defined networking age. Despite almost
two decades of research, algorithmic solutions still fall short of meeting the line-speed of high-performance network devices.
Although decomposition-based approaches, such as cross-producting and recursive flow classification (RFC), can achieve high
lookup rate by performing a parallel search on chunks of the packet header, both of them suffer from memory explosion problem
during aggregation. In this study, the authors propose an HybridRFC, a memory-efficient recursive scheme for multi-field packet
classification. By addressing the embedded problem of the RFC caused by uncontrollably expanded cross-product tables,
HybridRFC can not only reduce the memory consumption to a practical level but also improve pre-processing performance
significantly. Experimental results show that the memory requirement of HybridRFC is two orders of magnitude less than RFC,
as well as three orders of speed-up on the performance of table building on average.

1 Introduction
Modern network devices provide services beyond basic packet
forwarding, such as access control, security, policy routing and
quality of service (QoS). Multi-field packet classification is the
core functionality for supporting these services, which decides the
action to be taken on a packet based on multiple fields in the packet
header. A predefined classifier consisting of a set of rules is looked
up for a match for these purposes. To match a rule, packet
classification needs to compare multiple header values of the
incoming packet against the field values of all the rules in the
classifier to determine the type of actions (e.g. drop or permit) to
be taken on the packet. With the adoption of software-defined
networking (SDN), packet classification has become even more
prominent than ever, where OpenFlow plays a central role in the
forwarding plane of SDN [1]. An example OpenFlow flow table is
shown in Table 1. Although the recent OpenFlow specification puts
forward the multiple match tables (MMT) model that allows
multiple smaller flow tables to be matched in a pipeline of stages,
MMT still contains some complex flow tables and needs to
conduct fast packet classification. Recently, P4 has been introduced
to support programming protocol independent packet processing,
where a compiler transforms an imperative program into a table
dependency graph that can be mapped to a pipeline model with
multiple ordered tables with an arbitrary number of fields. Thus,
multi-field packet classification is still a key functionality in these
new configurable switch architectures. Due to its importance and
challenge, packet classification has attracted research attention for
almost two decades. 

Packet classification is a challenging problem due to the line-
speed requirement of network devices, where a packet has to be
processed within a very short time. The common practice for line-
speed packet classification in the industry is to use ternary content
addressable memory (TCAM), which is a fully associative memory
that allows a ‘don't care’ state to be stored in each memory cell in
addition to 0 s and 1 s. When a packet is presented to the TCAM,
each TCAM entry is looked up in parallel and the best matching
rule is returned. Thus, a single TCAM access is sufficient to
perform a packet classification. Although TCAM enables parallel
lookups on rules for line-speed classification, this brutal force
hardware solution is not only expensive, but also very power-
hungry, which seriously limits its scalability. During the past
decade, a lot of methods and algorithms had been proposed to
alleviate these problems, such as classifier minimisation [2–6],
range encoding [7–11] and pre-classifier [12–15]. However, due to
inherent limitations of TCAM, the TCAM capacity is not expected
to increase significantly in the near future [4].

Recently, researchers have been actively investigating
algorithmic alternatives for TCAM, such as hash-based algorithms
[16, 17], decision-tree techniques [18–26] and decomposition-
based schemes [22, 27–29]. Among them, techniques based on
decomposition have been recognised as some of the most
promising approaches for designing high-throughput network
devices, since they can leverage the parallelism offered by modern
hardware to accelerate lookup performance. Cross-producting [30],
a classic decomposition algorithm, can scale well with regard to the
number of fields as well as the type of field specification.
However, cross-producting will build up a big cross-product table

Table 1 Example OpenFlow 1.0 classifier
Rule Ingress Ether Ether Ether VLAN VLAN IP IP IP IP TCP/UDP TCP/UDP Action

port src dst type id priority src dst proto ToS bits src port dst port
R1 3 * * 2048 * * 206.159.213.125/32 101.152.182.8/30 0x06f/0xff 0 1024:65535 * forward
R2 5 * * 2048 * * 15.25.70.8/30 * 0x11f/0xff 0 * 0:1599 enqueue
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Rn * * * * * * * * * * * * drop
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that requires excessive memory capacity. In order to alleviate the
problem, recursive flow classification (RFC) [31], performs a
search in multiple phases instead of a single phase, so that much
smaller cross-product tables will be needed in each aggregation
phase. Nevertheless, with the expansion of the rule set, the memory
consumed in an RFC will still increase drastically and cause
memory explosion. Instead of splitting all fields into chunks for
aggregation, hierarchical space mapping (HSM) [29] reduces the
searching fields by mapping the lookup domains two-to-one, step
by step and hierarchically. To solve the memory explosion
problem, distributed crossproducting of field labels (DCFL) [28]
proposes a hardware-based distributed cross-producting scheme
working with field labels. However, it is difficult to be widely used
in industry because the assumptions in integrated circuit
technology advancement of DCFL are unrealistic. To speed up the
table building, fast table building for recursive flow classication
(FRFC) [27] divides the total rule set into multiple sub-sets and
creates tables for each sub-set with RFC individually. HybridCuts
[22], a recent proposed decomposition-based cutting scheme, can
improve storage and performance simultaneously by partitioning
rules into subsets. However, its partition scheme is based on the
observations about typical 5-tuple classifiers, which seriously limit
its adaptability for general flow tables. As an improvement,
CutSplit [21] partitions rules based on general small field rather
than address fields, but its performance is undetermined and
depends upon the specific rule bases. As far as we know, most of
the existing decomposition-based approaches can be well applied
for some modest classifiers, but still suffer from memory explosion
for large classifiers. All in all, memory is still a precious resource
in current network packet processing devices. Reducing memory
consumption can not only reduce the cost but also accelerate
classification by putting rules into static random-access memory
(SRAM).

In this paper, we propose HybridRFC, a memory-efficient
decomposition-based scheme for multi-field packet classification.
We first seek to understand the reasons behind the memory
explosion problem suffered by RFC algorithm. Then we make
some important observations which provide a good substrate for
our proposed algorithm. Finally, on the basis of the idea of saving
sparse CBM (class bitmap) entries from further accessing to the
subsequent aggregations, we present our proposed HybridRFC,
which can reduce the memory consumption to a practical level
even for large classifiers. In addition, by separating rules into
subsets and shuffling rule bits individually, HybridRFC can also
improve pre-processing performance significantly. Experimental
results show that using ClassBench [32], HybridRFC achieves a
memory reduction of 268.8 times compared to RFC, as well as
965.2× speed-up on the performance of table building on average.
Compared to CutSplit, the state-of-the-art algorithmic approach,
HybridRFC also achieves an average of 2.6× improvement on
performance in terms of the number of memory access. Due to its
high performance and good scalability in arbitrary number of
fields, HybridRFC can not only support fast packet classification in
traditional network devices, but also be well applied to the new
configurable switch architectures such as MMT and P4.

The rest of this paper is organised as follows. In Section 2, we
first give some background and briefly summarise our goals. After

that, we make a set of key supporting observations and present the
technical details of HybridRFC in Section 3. Section 4 verifies the
effectiveness of HybridRFC with experimental results. Finally,
Section 5 draws conclusions on this work.

2 Background
2.1 Multi-field packet classification problem

The purpose of multi-field packet classification is to find a
matching rule from a predefined packet classifier for a packet. A
packet classifier is a set of rules, with each rule R consisting of a
tuple of F field values (exact value, prefix or range) and an action
to be taken in case of a match. For example, a typical 5-tuple rule
consists: the source and destination IP addresses (i.e. SA, DA), the
source and destination ports (i.e. SP, DP), and the protocol number
(i.e. Prot). The rules are often prioritised to resolve potential
multiple match scenarios.

Packet classification can be treated as a point location problem
in computational geometry and it has been proved that the best
bounds for locating a point are either Θ(log N) time with Θ (N F)
space, or Θ(logN F − 1) time with Θ(N) space for N non-
overlapping hyper-rectangles in F-dimensional space [24]. Clearly,
this is impractical even for small classifiers. But fortunately, packet
classification rules in real-life applications have some inherent
characteristics that can be exploited to reduce the complexity.
These inherent characteristics provide a good substrate for the
exploration of practical algorithmic solutions. The following is a
distillation of previous observations relevant to our work [8, 14, 21,
22, 24, 30, 31]: (i) the protocol field is restricted to a small set of
values; (ii) rules specify a limited number of distinct transport port
ranges; (iii) the number of address prefixes matching a given
address is typically five or less; (iv) the number of rules matching a
given packet is typically five or less; (v) many rules share the same
field values; (vi) most of the rules have at least one small field;
(vii) most of the rules have at least one small address field.

2.2 Related work and our goals

Since our proposed HybridRFC is designed mainly based on the
well-known RFC algorithm, we next give a more detailed review
on RFC in this subsection.

RFC algorithm [31], a generalisation of cross-producting [30],
builds multiple lookup tables through multiple phases as illustrated
in Fig. 1. In phase 0, all fields of the packet header are split into
multiple chunks that are used for indexing memories. In
subsequent phases, the cross-product tables are formed by a
combination of several temporary CBM tables that are results of
the lookups from previous phases. Each lookup will map the chunk
to an ‘chunk equivalence set’ (CES) according to the rules. The
term CES is used to denote a set of chunk values that have the
same eqID, which is determined by the rules corresponding to this
chunk. To facilitate the calculation of eqIDs for subsequent phases,
the ‘class Bitmap’ (CBM) is used for each CES to indicate the
rules that are contained in this CES for the corresponding chunk.
Thus, there are two data in CBM tables: an identification number
(i.e. eqID) of the CBM table and a bitmap for the matched rules
(i.e. CBM). For each bitmap in CBM tables, the ith bit is set to
bit-1 if the given key value is matched with the corresponding
fields of the ith rule. In the final phase, the matched rule ID can be
obtained from the lookup. For each incoming packet, it performs
independent, parallel searches on chunks of the packet header
recursively. Fig. 2 shows a sample construction of cross-product
table for a classifier with eight rules (i.e. eight bits for each CBM). 

From the above review, we can see that there are two main
sources of memory consumption in RFC: chunk table and cross-
product table. As we know, when the size of the rule set grows, the
cross-product tables become the dominant cause for the memory
explosion problem in RFC. Thus, the goal of our work is to solve
the memory explosion problem in RFC by carefully controlling the
rapid growth on the cross-product tables. Next, we give some more
technical details of our proposed HybridRFC.

Fig. 1  Example of classic 5-tuple packet flow in RFC (#phase=4)
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3 HybridRFC
In this section, we first make some observations on the inherent
characteristics of CBM tables in RFC. After this, based on these
key supporting observations, we detail three key ideas which can
help to reduce the memory consumption of the cross-product
tables. Finally, we give the refined framework of HybridRFC.

3.1 Key observations

By examining the cross-product table construction for three
different types of rule sets from ClassBench, we identify three
following important and helpful observations on CBM tables in
RFC.

Observation 1: Most of the class bitmaps in CBM table are
relatively sparse. In other words, the number of rules matched by
each CES is much smaller than the rule set size, where each CES is
denoted by a class bitmap in CBM table. For example, there are
(4+5+8)*8=136 bitmap bits in three CBM tables in Fig. 2, but only

33 bits are marked as 1. Thus, the average ratio of bit-1 in Fig. 2 is
0.24. More experimental results using ClassBench as shown in
Table 2 possess similar sparseness, where cross-product tables are
constructed as shown in Fig. 1. We can see that the mean ratio of
bit-1 for three different rule sets is only 0.131. 
Observation 2: At later aggregation phases, the above sparse
feature of CBM will become more apparent. Take Fig. 2 as an
example. The average ratio of bit-1 in phase 0 is 23/72=0.32 while
it drops to 10/64=0.16 in phase 1. Table 2 shows more details in
our experiments.
Observation 3: Big rule is the main contributor to bit-1 s in CBM
tables. In other words, rules that contain big field range may be
present in a large amount of CBM entries. Note that unlike
previous definitions about big/small given in [21, 22], the notation
of big described here is a more relative concept as the width of
chunk is variable. For example, 192.168.*.* may be considered as
a small field in [21, 22], but it is the biggest field (i.e. wildcard in
all lower 16 bits) for chunk table #0 in Fig. 1. Based on these
definitions and notations, Fig. 3 shows the influence of big rules
for CBM table #0 from Fig. 1. We can see that more than 90%
bit-1 s are marked by the less than 10% biggest rules for most rule
sets. Considering that a significant fraction of FW rules have
wildcard address fields (about 65% for the lower 16 bits), the
results for seed-fw in Fig. 3 is still consistent with our observation. 

3.2 Key ideas

Based on the above observations, we introduce three key ideas of
HybridRFC, where the first one is the basis and the other two are
optimisations. The rationale behind these ideas is simple: since
each cross-product table in RFC is formed by a combination of two
or more CBM tables from its previous phase, the idea directly
perceived is to reduce the number of valid entries in the CBM
tables, so that the total number of the following cross-product
entries as well as the memory consumption will be reduced.

(1) Remove sparse bitmap entries from the CBM table so as to
reduce the number of the following cross-product entries. As each
cross-product table is formed by a combination of several CBM
tables from its previous phase, and the final matching rule must be
indicated by bit-1 in all matched bitmaps from different phases, the
rules indicated by bit-0 in any intermediate CBMs cannot be the
final matching rule. For example, if the key value in the packet
matches the second bitmap entry in CBM table #1 in Fig. 2 (i.e.
class bitmap = 00100001), we can be sure that only the third and
eighth rule (i.e. R3 and R8 in Fig. 4) can be the final matching rule.
Similarly, if the key value in the packet matches the third bitmap
entry in CBM table #1 in Fig. 2 (i.e. class bitmap = 00101000), we
can be sure that only the third and fifth rule (i.e. R3 and R5 in Fig. 4)
can be the final matching rule. Since most of the class bitmaps in
CBM tables are relatively sparse, we can simply conduct linear
search on the rule-list which contains these rules indicated by bit-1
to find the best matching, rather than further aggregation with other
CBM tables. To support this new search strategy, we can simply
modify the data structure of chunk and cross-product tables by
adding one flag bit. Fig. 4 shows more details of modified data
structure of HybridRFC. Based on this idea, if we set the threshold
at two such that at most two rules are allowed for linear search, we
can remove four bitmap entries in phase 0 that marked in red from
CBM table #0 and CBM table #1 in Fig. 2. Thus, the size of the
following cross-product table #0 can drop down from 4*5 = 20
entries to 2*3 = 6 entries. 
(2) Shuffle rule bits to enhance the sparseness of CBM table entries
in early phases. Based on the second observation that the sparse
feature of CBM will become more apparent at later aggregation
phases, we can shuffle rule bits from discriminative fields to reduce
the total number of cross-product entries in RFC. The rational
behind this strategy is simple: by shuffling rule bits from
discriminative fields, we can get more sparse bitmap entries that
can be removed from CBM tables in early phases, so that the total
number of the following cross-product entries as well as the
memory consumption will be reduced. In essence, the second
observation above is consistent with many previously discoveries

Fig. 2  Sample construction of the cross-product table in RFC. Assuming
the threshold as 2, four bitmaps marked in red are indicated as sparse CBM
entries, which will be removed out for linear search in HybridRFC

 
Table 2 Average ratio of bit-1 in CBM tables in different
phases
rule set (#rule) Phase 0 Phase 1 Phase 2 Phase 3 Mean
seed-ACL (752) 0.136 0.120 0.005 0.005 0.066
seed-FW (269) 0.459 0.241 0.080 0.010 0.197
seed-IPC (1550) 0.257 0.243 0.009 0.003 0.128
Mean 0.284 0.201 0.031 0.006 0.131
 

Fig. 3  Influence of big rules for CBM table #0 in Fig. 1 for different rule
sets

 

Fig. 4  Example of data structure for tables in HybridRFC (threshold = 2)
(a) Data structure in RFC, (b) Data structure in HybridRFC
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about real-life rule sets, which has been well summarised in the
above section. Three of those inherent characteristics are critical
for our second idea: (i) The number of rules matching a given
packet is not very large - typically five or less; (ii) The number of
IP address prefixes matching a given packet is also typically five or
less; (iii) Many different rules share the same field. Thus, we can
conclude that, with more discriminative field combined, the
sparseness of the corresponding CBM table will be more obvious.
Based on this conclusion, we propose a modified RFC algorithm
for each following partitioned rule subset, which shuffles the rule
bits for each chunk, rather than mapping continuous bit ranges for

each chunk as in RFC. For example, instead of splitting the lower
16 bits in the source address (i.e. Src.IP[0:15]) for chunk #0 in Fig.
1, we can instead choose 8 bits from the source address and 8 bits
from the destination address (e.g. Src.IP[0:3], Src.IP [8:11] and
Dst.IP[16:19], Dst.IP[24:27]). By shuffling address bits, we can
obtain more sparse CBM tables in early phases, so that more CBM
entries become sparse and get removed early in the classifier for
linear search.
(3) Partition rules into subsets to relieve influence of big rules,
which will further enhance sparseness of CBM tables. According
to the third observation, since big rule/field is the main contributor
to bit-1 s in CBM tables, separating big rules from small rules can
enhance sparseness of CBM entries significantly. As we all know,
rule set partitioning is an effective method that has been wildly
used in many recent algorithmic approaches. Based on previous
observation that IP address is the most significant field for packet
classification [13, 14, 20, 22, 31], we can simply separate rules into
the following four subsets based on address field length: (bigsrc,
bigdst), (bigsrc, smalldst), (smallsrc, bigdst) and (smallsrc, smalldst).
Obviously, partitioning may degrade lookup performance for most
algorithmic approaches such as decision-trees, but it will not be a
problem for decomposition based algorithms, since they can
leverage the parallelism offered by modern hardware.

3.3 Framework

Based on above observations and key ideas, we now present the
framework of HybridRFC as shown in Fig. 5. The modified RFC is
designed based on above first two key ideas, which is different
from RFC in two perspectives: remove sparse CBM entries and
shuffle rule bits. 

In order to reduce influence of big rules for CBM tables, we
first separate the rule set into four subsets based on two IP address
length. More details about rule set partition algorithm can refer to
[21, 22]. For each subset, we then construct a modified RFC
individually as shown in Fig. 6, where bits in small field are
recombined with 4-bit interval in our experiments. The reason for
this shuffle algorithm is based on the observation that small field is
more discriminative than large field. Thus, with partial bits from
small fields combined, the sparseness of the corresponding CBM
table in early phases will be more obvious. During classification,
each incoming packet will first search in 4 subsets in parallel and
the matching rule with the highest priority will then be chosen as a
result. 

Of course, rule bit shuffle algorithm is an open problem. The
specific algorithm described in Fig. 6 is a practical implement in
our experiments, but not the optimal solution. Due to the
consideration on its relevance, more optimisations on shuffle
algorithm will be further studied in our future work.

3.4 Working example

To illustrate how HybridRFC works, we consider a simple working
example based on the classifier in Table 3 which contains eight 2-
tuple rules. For the simplicity of description, we assume there are
only two types of values: wildcard (i.e. *) as big field and specific
value as small field. 

We first split the 16-bits into two 8-bits chunks to express how
RFC works in two recursive phases. The field X column in Table 3
partitions the possible values into five sets (i.e. CES): (a) {*} (b)
{00001111, *} (c) {01010101, *} (d) {10101010, *} (e)
{11110000, *}; which can be indexed by eqID from eqID = 1 to
eqID = 5. The field Y column in Table 3 also partitions the possible
values into five sets: (a) {*} (b) {00001111, *} (c) {01010101, *}
(d) {10101010, *} (e) {11110000, *}; which can be indexed by
eqID from eqID = 1 to eqID = 5. For each CES, a CBM is assigned
to indicate which rules contain this CES for the corresponding
chunk. Fig. 7 shows the contents of RFC tables for the example
classifier of Table 3. The sequence of accesses made by the
example packet have also been shown using big gray arrows and
the memory locations accessed in this sequence have been marked
in bold. By separating rules into subsets based on small and big
field, HybridRFC can partition the rule set into four subsets:(a)

Fig. 5  Framework of HybridRFC. Note that the middle four modified
RFCs can be searched in parallel

 

Fig. 6  Modified RFCs for partitioned rule subsets in HybridRFC
(a) Modified RFC for (bigsrc, bigdst), (b) Modified RFC for (smallsrc, bigdst), (c)
Modified RFC for (bigsrc, smalldst), (d) Modified RFC for (smallsrc, smalldst)
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(bigX, bigY) = {R8} (b) (bigX, smallY) = {R7} (c) (smallX,
bigY) = {R6} (d) (smallX, smallY) = {R1, R2, R3, R4, R5}. Fig. 8
shows the contents of HybridRFC tables for the partitioned rule
subset: {R1, R2, R3, R4, R5}. The sequence of accesses made by the
example packet have also been shown using big gray arrows and
the memory locations accessed in this sequence have been marked
in bold. From these two figures, we can see that HybridRFC can
significantly reduce the size of cross-product tables by shuffling
rule bits and removing rules in sparse bitmaps for linear search. 

4 Experiment results
In this section, we present the performance of HybridRFC with two
other representative RFC based schemes: HSM and FRFC, as well
as two latest algorithmic approaches: HybridCuts and CutSplit. We
evaluate the performance with rule sets generated using
ClassBench [32], whose size varies from 1 to 10 K. There are three
types of rule sets: access control list (ACL), Firewall (FW) and IP
chain (IPC). Each rule set is named by its type and size, e.g.
FW_1K refer to the Firewall rule set with about 1000 rules. We
evaluate our algorithm from memory consumption, pre-processing
time and memory access respectively. Besides, we also evaluate the
effectiveness of the key ideas in HybirdRFC. All experiments are
run on a machine with AMD A8-5600 K CPU@3.6 GHz and 8G
DRAM. The operation system is Ubuntu 14.04.

4.1 Memory consumption

Table 3 shows the memory consumption as well as pre-processing
time of HybridRFC in comparison with that of the original RFC
algorithm. Since the number of rules matching a given packet is
typically five or less, we set the threshold at five such that at most
five rules are allowed for linear search in HybridRFC.
Experimental results show that HybridRFC achieves a significant
memory reduction compared with the original RFC algorithm,
ranging from 9.5 times to 1284.1 times, with an average reduction
of 268.8 times. Even for large rule sets up to 10 K, the memory
requirement of HybridRFC can still be limited to a few megabytes
in our evaluations.

Fig. 9 shows the reduction ratio of memory consumption in
comparison with that of RFC algorithm for HSM, FRFC and
HybridRFC. Compared to HSM and FRFC, HybridRFC also
achieves 45 × and 5 × improvement respectively. 

4.2 Pre-processing time

Compared with the original RFC algorithm, HybridRFC achieves a
significant speed-up on pre-processing performance as illustrated
in Table 4, ranging from 2.1 times to 3991 times, with an average
speed-up of 965.2 times. Even for large rule sets up to 10 K,
HybridRFC can still finish table building in a few seconds, while it
may cost a few hours in RFC. 

Fig. 10 shows the improvement of pre-processing time in
comparison with that of RFC algorithm for HSM, FRFC and
HybridRFC. Compared to HSM and FRFC, HybridRFC also
achieves 51 × and 4 × improvement respectively. Thus, by
separating rules into subsets and removing sparse entries for
individual processing, HybridRFC can not only reduce memory
consumption to a practical level, but also improve pro-processing
performance significantly. 

4.3 Effectiveness of key ideas

To gain more insights, we make several evaluations on the
effectiveness of the three key ideas in HybridRFC, which can be
seen from Figs. 11 and 12. Each evaluated scheme is named by the
key ideas it adopted, e.g. HybridRFC_idea1 refer to the improved
RFC by only removing sparse bitmap entries from its CBM tables.
Obviously, these key ideas really enhance the sparseness of CBM
table entries, which in turn reduce the total number of the
following cross-product entries. 

Table 3 Example 2-tuple classifier (field width = 8)
Rule Priority Field X Field Y Action
R1 8 10101010 10101010 action1

R2 7 10101010 01010101 action2

R3 6 01010101 10101010 action3

R4 5 01010101 01010101 action4

R5 4 11110000 00001111 action5

R6 3 00001111 ******** action6

R7 2 ******** 11110000 action7

R8 1 ******** ******** action8

 

Fig. 7  Contents of RFC tables for the example classifier
 

Fig. 8  Contents of HybridRFC (threshold = 1) tables for the classifier
(smallX, smallY)

 

Fig. 9  Reduction of memory consumption in comparison with that of RFC
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4.4 Worse-case memory access

Fig. 13 shows the performance in terms of the worst number of
memory access for HybridRFC as well as HybridCuts and
CutSplit, which are two latest algorithmic approach. Compared to
HybridCuts and CutSplit, experimental results show that
HybridRFC achieves an average of 3.5 × and 2.6 × improvement
respectively, as well as 1.4 × and 1.9 × improvement with parallel
implementation. 

4.5 Throughput

Fig. 14 shows some simulation results on classification
performance for HybridRFC as well as HybridCuts and CutSplit.
We conduct simulations by classifying one million packets
generated by ClassBench when it constructs the corresponding
classifier. We measure the packet classification throughput with
one-level caching which is called microflow in Open vSwitch.
Experimental results show that HybridRFC runs faster than

HybridCuts and CutSplit, achieves an average of 0.84 and 0.79
times speed-up respectively, as well as 0.24 and 0.27 times speed-
up with parallel implementation. 

5 Conclusion
Multi-field packet classification is not only an indispensable and
challenging functionality of existing network devices, it also plays
a central role in the forwarding plane of SDN. Despite almost two
decades of research, algorithmic solutions still fall short of meeting
the line-speed of high-performance network devices. Although
decomposition based-schemes are well-suited for designing high-
throughput network devices, most of them are still memory
inefficient. In this paper, we propose an improved RFC algorithm
called HybridRFC, which is a memory-efficient recursive scheme
for fast multi-field packet classification. The main contributions of
this work include: several novel observations on the sparseness of
CBM tables and a refined framework with three key ideas to
reduce memory consumption. By addressing the key problem of
uncontrolled memory explosion of cross-product tables in RFC,
HybridRFC can not only reduce the memory consumption to a
practical level, but also improve pre-processing performance
significantly.
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