
KickTree: A Recursive Algorithmic Scheme for Packet
Classification with Bounded Worst-Case Performance

Yao Xin
Peng Cheng Laboratory

Shenzhen, China

Yuxi Liu
Southern University of Science

and Technology, Shenzhen, China

Wenjun Li∗
Peng Cheng Laboratory, China
& Harvard University, MA, US

Ruyi Yao
Fudan University
Shanghai, China

Yang Xu
Fudan University
Shanghai, China

Yi Wang
Southern University of Science

and Technology, Shenzhen, China

ABSTRACT
As a promising alternative to TCAM-based solutions for
packet classification, FPGA has received increasing atten-
tion. Although extensive research has been conducted in
this area, existing FPGA-based packet classifiers cannot sat-
isfy the burgeoning needs from OpenFlow, which demands
large-scale rule sets and frequent rule updates. As a recently
proposed hardware-specific approach, TabTree avoids rule
replication and supports dynamic rule update. However, it
still faces problems of unbalanced rule subset partition, un-
evenly distributed subtrees and excessive TSS leaf nodes
when implemented on FPGA. In this paper, we propose a
hardware-friendly packet classification approach called Kick-
Tree, which is elaborated by considering hardware properties.
To take advantage of intrinsic parallelism of FPGA, KickTree
adopts multiple balanced decision trees which can run simul-
taneously. The bit selection is more flexible which breaks
the restriction of rule subset. Moreover, each subset size is
strictly limited, leading to bounded and evenly-distributed

∗Corresponding author: Wenjun Li (wenjunli@seas.harvard.edu). Yao Xin
and Yuxi Liu contributed equally to this paper. This work is supported by
National Key R&D Program of China (2019YFB1802600), Key-Area Research
and Development Program of Guangdong Province (2021B0101400001,
2020B0101130003), NSFC (62102203, 62172108), theMajor Key Project of PCL
(PCL2021A08), Guangdong Basic and Applied Basic Research Foundation
(2019B1515120031), Shanghai Pujiang Program (2020PJD005), Science and
Technology Commission of Shanghai Municipality (20S31903800) and China
Postdoctoral Science Foundation (2020TQ0158, 2020M682825, PC2021037).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANCS ’21, December 13–16, 2021, Layfette, IN, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9168-9/21/12. . . $15.00
https://doi.org/10.1145/3493425.3502752

trees. Experimental results show KickTree outperforms Tab-
Tree significantly in terms of the number of memory accesses
for each classification operation while providing a rule up-
date performance comparable to TabTree. In summation,
KickTree is more practical for implementations on FPGA.

CCS CONCEPTS
• Networks→ Packet classification.

KEYWORDS
SDN, packet classification, decision tree, FPGA

ACM Reference Format:
Yao Xin, Yuxi Liu, Wenjun Li, Ruyi Yao, Yang Xu, and Yi Wang.
2021. KickTree: A Recursive Algorithmic Scheme for Packet Classi-
fication with Bounded Worst-Case Performance. In Symposium on
Architectures for Networking and Communications Systems (ANCS
’21), December 13–16, 2021, Layfette, IN, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3493425.3502752

1 INTRODUCTION
Packet classification provides a way to discriminate packets
into different “flows” and enables differentiated functionali-
ties in various applications such as quality of service (QoS),
security, and monitoring [40]. All packets belonging to the
same flow obey a pre-defined rule and are processed in simi-
lar manner by the router. Although it has beenwidely studied
in the last two decades, the well-known OpenFlow, being a
foundation of Software-Defined Networking (SDN), puts for-
ward higher requirements for packet classification [29]. Com-
pared with conventional switches and routers, the packet
classification in OpenFlow switches requires higher dimen-
sions, larger rule sets, and a faster update rate.
At present, the mainstream hardware-based algorithms

are principally TCAM-based solutions, but their shortcom-
ings of limited capacity, high cost, and high power consump-
tion make them difficult to be widely used in OpenFlow
scenarios [30]. As a powerful hardware alternative to TCAM,
the FPGA is gradually receiving attention [3, 8, 18, 31]. The
existing FPGA-based packet classification designs are mainly

https://doi.org/10.1145/3493425.3502752
https://doi.org/10.1145/3493425.3502752

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Yao Xin, et al.

based on two algorithms: decision tree [9, 20] and decompo-
sition method [10, 33]. The method based on decision tree
faces the challenge of dynamic update due to rule replication,
while the decomposition method has the dilemma of consum-
ing too many resources so being unable to store large-scale
rule sets. So almost none of the mentioned methods can meet
the needs of OpenFlow scenarios.
TabTree [25] is a newly proposed decision tree based

packet classification algorithm dedicated to FPGA. It uses
small fields to divide rule set into subsets, and then uses Tu-
ple Space Search (TSS) [38] to assist in the construction of
decision tree for each subset, thus avoiding rule duplication
and supporting dynamic updates. However, in the actual
FPGA implementation, it still encounters several problems:
i) The division of subsets heavily relies on empirical small
fields characteristics of rules, and the number of subsets is
the exponential size of the small fields. For instance, if 𝐾
small fields are selected, 2𝐾 subsets need to be generated,
and the higher the rule dimension, the higher the probability
of a larger𝐾 value. Therefore, the scalability is poor for high-
dimensional rules; ii) The distribution of each rule subset
partitioned based on the preset small fields is uneven, so that
the depth of each decision tree is very different, which is
not conducive to the convergence of concurrent results by
FPGA; iii) There are a large number of TSS leaf nodes in
the decision tree. Each TSS structure contains multiple hash
tables, and the number of TSS is unpredictable for each rule
set, which is not friendly to hardware implementation.

In response to the above problems, we propose KickTree in
this paper, which fully takes the hardware characteristics into
consideration, eliminates the disadvantages of rule partition
based on small fields division, and takes advantage of parallel
computing. The main contributions are as follows:

• KickTree does not adopt a TSS and builds multiple
evenly distributed decision trees in a recursive man-
ner, which can tap the advantages of FPGA inherent
parallelism. Each tree is searched in parallel.

• This algorithm breaks the restriction of static subset
partition, merges all header fields into the bit-selection
range at the same time, and dynamically selects bits
to establish decision trees without rule duplication.

• The maximum tree depth (i.e. number of intermedi-
ate node levels) and the number of rules contained in
each leaf node are both strictly limited, so that each
tree is constructed in an equalized manner, which bal-
ances the search time of each tree in the hardware and
reduces the bottleneck effect.

Preliminary experimental results show that, a limited num-
ber of evenly distributed subtrees can be generated in Kick-
Tree. Compared with other latest decision tree schemes: Cut-
Split [24] and TabTree, KickTree has a significant reduction

Table 1: Example rule set with four IPv4 header fields
rule id priority SA DA SP DP action
𝑅1 13 228.128.0.0/9 124.0.0.0/7 119:119 0:65535 action1
𝑅2 12 223.0.0.0/9 38.0.0.0/7 20:20 1024:65535 action2
𝑅3 11 175.0.0.0/8 0.0.0.0/1 53:53 0:65535 action3
𝑅4 10 128.0.0.0/1 37.0.0.0/8 53:53 1024:65535 action4
𝑅5 9 0.0.0.0/2 225.0.0.0/8 123:123 0:65535 action5
𝑅6 8 107.0.0.0/8 128.0.0.0/1 59:59 0:65535 action6
𝑅7 7 0.0.0.0/1 255.0.0.0/8 25:25 0:65535 action7
𝑅8 6 106.0.0.0/7 0.0.0.0/0 0:65535 53:53 action8
𝑅9 5 160.0.0.0/3 252.0.0.0/6 0:65535 0:65535 action9
𝑅10 4 0.0.0.0/0 254.0.0.0/7 0:65535 124:124 action10
𝑅11 3 128.0.0.0/2 236.0.0.0/7 0:65535 0:65535 action11
𝑅12 2 0.0.0.0/1 224.0.0.0/3 0:65535 23:23 action12
𝑅13 1 128.0.0.0/1 128.0.0.0/1 0:65535 0:65535 action13

in the number of memory accesses for classification. More-
over, even for rule sets up to 100k entries, KickTree can still
construct shallow decision trees with limited subsets number,
which is hardware-friendly for FPGA implementation.

The rest of the paper is organized as follows. Section 2
summarizes background and related work briefly. Section 3
presents the technical details of KickTree. Section 4 shows
preliminary experimental results. Finally, Section 5 draws
the conclusion and future work.

2 BACKGROUD AND RELATEDWORK
2.1 The Packet Classification Problem
Packet classification is classifying network traffic in fine
granularity according to multi-domain packet header infor-
mation and a pre-established classifier which consists of
a set of rules. Each rule 𝑟 has 𝑑 components represented
by 𝑟𝑖 . 𝑟𝑖 is a regular expression on the 𝑖 field of the packet
header, which could be prefix, range or exact value. A packet
𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑑) is said to match rule 𝑟 if ∀𝑖, 𝑝𝑖 ∈ 𝑟𝑖 . Table 1
shows an example rule set with four IPv4 header fields. Pri-
ority indicates the degree of importance, meaning that if a
packet conforms to more than one rule, low priority rules
would give way to high priority rules. Packet classification
has been extensively researched in last two decades [40] with
numerous algorithmic approaches proposed, such as decision
tree [1, 4, 5, 7, 9, 14–17, 20, 23, 24, 32, 36, 36, 43, 46, 48], decom-
position [2, 11, 13, 21, 39, 41, 47], and TSS [6, 28, 35, 37, 38].
Since KickTree is a decision tree algorithm for FPGA hard-
ware design, the following subsections mainly review the
decision tree algorithms and the related work of FPGA-based
packet classification.

2.2 Decision Tree based Algorithms
Decision tree based methods involve cutting the search space
recursively into several smaller sub-regions based on the in-
formation from one or more fields in the rule, until the num-
ber of rules in each region is lower than a certain threshold
(i.e., binth). The key values in the packet header are used to
search in the tree until the leaf of the decision tree is found,

KickTree: A Recursive Algorithmic Scheme for Packet Classification... ANCS ’21, December 13–16, 2021, Layfette, IN, USA

SA&DA tree

Subset: R1, R2

Ø Ø

00 01 10 11

Leaf 1

R2

Leaf 2

R1

Selected Bits:

2th & 34th

(a) Subset1:(𝑠𝑚𝑎𝑙𝑙𝑆𝐴, 𝑠𝑚𝑎𝑙𝑙𝐷𝐴)

DA tree
Subset: R4, R5,
R7, R9, R10, R11

00 01 10 11
Selected Bits:

33rd & 36th

R5,R11

Leaf 2
R5

0

Leaf 3
R11

1 37th

TSS-assisted Node 1
1

st
 Tuple <1, 8>:{R7}

2
nd

 Tuple <3,6>:{R9}
3

rd
 Tuple <0,7>:{R10}

Leaf 1
R4

Ø

(b) Subset2:(𝑏𝑖𝑔𝑆𝐴, 𝑠𝑚𝑎𝑙𝑙𝐷𝐴)

Leaf 1
R3

SA tree
Subset: R3, R6, R8

Ø Ø

00 01 10 11

Selected Bits:

1th & 2th

TSS-assisted Node 1
1

st
 Tuple <8, 1>:{R6}

2
nd

 Tuple <7, 0>:{R8}

(c) Subset3:(𝑠𝑚𝑎𝑙𝑙𝑆𝐴, 𝑏𝑖𝑔𝐷𝐴)

TSS for Big Rules

1
st
 Tuple <1, 3>:{R12}

2
nd

 Tuple <1, 1>:{R13}

(d) Subset4:(𝑏𝑖𝑔𝑆𝐴, 𝑏𝑖𝑔𝐷𝐴)

Figure 1: Classifier based on TabTree (binth = 1)

which contains the rules or sub rule set that can match this
packet. According to the partitioning method on space, cur-
rent decision trees can be categorized into point-comparing
based splitting such as HyperSplit [32] and bit-selecting
based cutting such as HiCuts [14] and HyperCuts [36].
Although these methods can achieve high-speed packet

classification, rule replication is the key trouble-maker for
decision trees due to the case that a rule spans multiple
sub-spaces. Rule replication not only causes a large amount
of memory consumption, but also results in slow and com-
plicated rule updates. To reduce rule replications, rule par-
titioning has been recognized as a common practice and
plenty of novel partition based decision trees have been
proposed in the past decade, such as EffiCuts [44], Hybrid-
Cuts [23], SmartSplit [16], PartitionSort [49], CutSplit [24],
NeuroCuts [27], CutTSS [26] and NeuvoMatch [34]. How-
ever, most of them do not take into account hardware char-
acteristics and are unsuitable for FPGA implementation.

2.3 Hardware-specific Solutions
Although the FPGA has been increasingly recognized as a
promising alternative to TCAM-based solutions in the last
decade, existing FPGA-based packet classifiers cannot sat-
isfy the burgeoning needs from OpenFlow switches such
as large-scale rule sets and frequent rule updates. Specifi-
cally, although BV decomposition based method supports
dynamic rule updates [10, 19, 22, 33], the scale of rule sets is
restricted by FPGA logic resource, since it consumes a large
amount of distributed RAMs. Most decision tree algorithms
are designed for software with imbalanced and unbounded
depth, which not only results in inefficient optimizations on
FPGA but also makes the dynamic update difficult. Besides,
the characteristics of hardware are different from software,
so the migration and mapping process from software to hard-
ware will sacrifice some intrinsic advantages.

Figure 2: The framework of KickTree

To address this issue, the newly proposed TabTree [25]
designs a controllable number of balanced subtrees with low
memory footprints, which takes into account the characteris-
tics of FPGAs. Figure 1 shows the classifier based on TabTree
with rules in Table 1. Nevertheless, it still faces many chal-
lenges in actual implementation, which have been discussed
in Section 1. Therefore, the demands of FPGA design for
decision trees are refined as follows: i) shallow tree depth;
ii) few number of rules in each leaf node; iii) multiple sub-
trees taking advantage of the multi-concurrency feature of
hardware; iv) maximum balance among subtrees to reduce
performance bottlenecks.

3 OUR PROPOSED APPROACH
3.1 Ideas & Framework
Decision tree algorithms generally have uncontrollable tree
depth, or the number of rules in leaf nodes is not fixed. The
depth determines the node search latency, while the latter
determines the linear search latency in terminal nodes. These
two variables interact and influence each other. For example,
limiting the maximum tree depth will increase the number
of terminal node rules, and conversely, limiting the number
of terminal node rules will expand the levels of intermediate
nodes. However, from the perspective of hardware, many
decision trees with a fixed depth and a small leaf node rule
number are more preferred than a small number of deep
and bulky trees, since the hardware supports concurrent
operations of multiple trees, and the tree with the worst
performance will become the bottleneck of overall algorithm.
Based on this observation, KickTree adopts a balanced

concept to build decision trees instead of empirical and static
partitioning of rules subsets. In this approach, we break the
restriction of partitioning rule subsets, gather all possible
header fields together as a bit-selection pool, and dynamically
extract valid bits (not wildcards) each time to build a decision
tree in a recursive manner. Before building the tree, the
maximum depth and the threshold for the number of rules
in each leaf node (binth) are specified to make worst-case

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Yao Xin, et al.

bounded. In the process of building the tree, the local optimal
principle is used to select bits sequentially, and the rules that
do not meet the bit-selecting conditions (e.g. the value of
the rule in the selection position is a wildcard) or exceed
the leaf node rule threshold are removed from current tree.
After the current tree is built, if there are remaining rules,
we continue to build the decision tree in the same way and
retain the rules of being kicked out for constructing the next
level of tree. This process continues until there are no rules
left. The framework of KickTree is shown in Figure2.

3.2 Bit-selecting Decision Tree
As each non-wildcard bit can map rules into at most two sub-
sets without any rule replications. To exploit this favorable
property, a multi-way tree could be built by selecting a few
non-wildcard bits in each tree node recursively. Choosing
more bits for each node to be divided can increase the num-
ber of forks and reduce the depth of the tree. However, too
many bits will increase the logic and storage resources of
the hardware and cause performance degradation. Therefore,
the choice of the number of bits is a matter of trade-off.

To control the width of the tree, we assume that at most b
bits are allowed to be selected in each tree node. In the pro-
cess of tree construction, the heuristic local optimal strategy
bit-selecting algorithm is utilized to select the most distin-
guishing non-wildcard bits, in order to build shallow and
balanced decision trees.

Local Optimal Strategy: This method selects the "good"
bits one by one and tries to find the most balance for each
bit. An imbalance value is assigned for each current unused
bit by using eq. (1), where #L_Child/#R_Child is the number
of rules mapped into the left/right child node (i.e., #bit-0/1s
in v-th bit). The local optimal algorithm selects at most b
bits in each round, where each selected single bit has the
minimum imbalance value among the currently unused bits.

𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (𝑏𝑖𝑡 𝑣) = |#𝐿_𝐶ℎ𝑖𝑙𝑑 − #𝑅_𝐶ℎ𝑖𝑙𝑑 | (1)

3.3 Evenly-distributed Tree Construction
The construction process of KickTree is shown in Figure 3.
The classifier construction starts from building the first tree
with the complete rule set as the root node.

In one of the following situations, the method stops the bit
selection process: 1) The tree depth reaches the predefined
maximum value; 2) The number of rules in the tree node is
less than the predefined threshold binth; 3) The remaining
unselected rule bits share the same value and cannot further
separate the rules from each other.

The rules would be “kicked” out of current tree in one of
the following two cases: 1) when current node is dividable,
the value of rules is a wildcard in the bit determined based
on the local optimal strategy; 2) when the current node is

Figure 3: The construction process of KickTree
indivisible which means the node would be a leaf node, and
the number of associated rules exceeds binth, the rules whose
priorities lag behind the top binth rules will be removed.
This recursive manner might result in multiple decision

trees with evenly distributed depth and leaf node rule num-
ber. These trees could be implemented on FPGA which run
simultaneously to perform packet search. By minimizing the
search delay among different decision trees, this even fea-
ture can improve the overall classification result generation
speed, thereby preventing the so-called bottleneck effect.

3.4 A Working Example
This subsection illustrates a KickTree classifier construction
example for the 13 rules given in Table 1. Assume that the
maximum tree depth is two, each internal tree node is al-
lowed to select a maximum of two bits for rule mapping
and the binth of the leaf node is one. Port fields are simply
transformed to Longest Common Prefix (LCP) as in Table 2.
The details of LCP can be referred to [25].

The process starts from building the first tree with the
complete rule set. The selected bits for dividing root node are
in 1st and 33rd, which would remove 𝑅8 and 𝑅10 as their 33rd
bit or 1st bit is wildcard. This cutting generates three valid
nodes. The first valid node {𝑅5, 𝑅6, 𝑅7, 𝑅12} chooses 74th and
75th bits to generate two leaf nodes where 𝑅12 is removed
since its corresponding bits are wildcards. The cutting bits
for the second valid node {𝑅1, 𝑅2, 𝑅3, 𝑅4} are the same which
generate three valid nodes including two leaf nodes. The
intermediate node {𝑅3, 𝑅4} reaches the maximum tree depth
and the number of rules exceeds binth, so the higher priority
rule 𝑅3 remains as a leaf node. With the rules removed from
the first tree as the root node, the second tree is built and the
rule 𝑅10 is removed to build the third tree. Then no rules are
left and the process of classifier construction is done. The
constructed KickTree classifier is illustrated in Figure 4.

3.5 Packet Classification & Rule Update
3.5.1 Classification. The classification mechanism for Kick-
Tree is similar to that of other multiple decision tree ap-
proaches. As shown in Figure 2, the incoming packet searches
in all subtrees and the results are collected to choose the rule
with the highest priority. The packet search procedure is
serial in software and parallel in hardware implementation.

KickTree: A Recursive Algorithmic Scheme for Packet Classification... ANCS ’21, December 13–16, 2021, Layfette, IN, USA

Table 2: Selectable bit for example rule set
rule src_addr (SA) dst_addr (DA) src_port (SP) LCP dest_port (DP) LCP
id 1-32th bits 33-64th bits 65-80th bits 81-96th bits
𝑅1 111001001*********************** 0111110************************* 0000000001110111 ****************
𝑅2 110111110*********************** 0010011************************* 0000000000010100 ****************
𝑅3 10101111************************ 0******************************* 0000000000110101 ****************
𝑅4 1******************************* 00100101************************ 0000000000110101 ****************
𝑅5 00****************************** 11100001************************ 0000000001111011 ****************
𝑅6 01101011************************ 1******************************* 0000000000111011 ****************
𝑅7 0******************************* 11111111************************ 0000000000011001 ****************
𝑅8 0110101************************* ******************************** **************** 0000000000110101
𝑅9 101***************************** 111111************************** **************** ****************
𝑅10 ******************************** 1111111************************* **************** 0000000001111100
𝑅11 10****************************** 1110110************************* **************** ****************
𝑅12 0******************************* 111***************************** **************** 0000000000010111
𝑅13 1******************************* 1******************************* **************** ****************

0100 1110

R1,R2,R3,R4,R5,R6,R7,

R8,R9,R10,R11,R12,R13

Leaf 6

R1

Ø

10 11

Ø

R1,R2,R3,R4

Selected Bits:

1st & 33rd

R5,R6,R7,R12 R9,R11,R13

Leaf 1

R7

00

Leaf 3

R5

11

Leaf 4

R2

00

R3,R4

01

Leaf 5 R3

Leaf 7

R11

Leaf 8

R9

0 174th & 75th

0 1

R4,R8,R10,R12,R13

Leaf 4

R13

1

R4, R13R8, R12

33rd36th

R10

Leaf 3

R4

0

Selected Bits:

1st

1
st

 tree 2
nd

 tree 3
rd

 tree

Leaf 2

R8

1

Leaf 1

R12

091st

Leaf 1

R10

74th & 75th

Leaf 2

R6
Ø

01 10

Kicked

 Rules

Kicked

 Rules

Figure 4: A working example of KickTree

3.5.2 Update. For rule deletion, the process is relatively
simple. In software, the trees are traversed and searched
from the first one. Thanks to the fact that rule replication
does not exist in KickTree, once the tree where the rule is
located is found, the rule would be deleted from this tree and
the remaining trees do not need to be searched further. In
hardware, all trees are traversed in parallel and only the tree
where the rule is located would execute the delete operation.
For insertion, search starts from the first tree. If the rule
number of the leaf node to be inserted has already reached
binth, or the current selecting bit is wildcard, then the next
tree is entered to search until a suitable tree is found to
insert. If existing trees do not meet the conditions, a new
subtree will be created. The update in hardware could be in
a cascaded manner as software.

4 PRELIMINARY EVALUATION
4.1 Experiment Methodology
In this section, we evaluate KickTree and two recently pro-
posed decision tree based approaches: CutSplit [24] and Tab-
Tree [25]. Different schemes are evaluated from the following
key aspects: number of rule subset, memory footprint, mem-
ory access and incremental update performance. For the last
three evaluations, the maximum tree depth, selection bit
number and binth are set to 10, 4, 8 respectively. All experi-
ments are run on a PC with Intel Core i7 CPU@3.20GHz.

Three types of rule sets are generated by ClassBench [42]
using default parameters, which are ACL, FW and IPC. The
rule set size varies from 1k, 10k to 100k. For each size, 12
rule sets based on 12 seed parameter files (i.e, 5 ACL, 5 FW,
and 2 IPC) are generated in ClassBench.

The source code of KickTree can be downloaded from the
website [12], as well as the GitHub [45].

4.2 Subset Number
The subset number is the subtree number in KickTree, which
is determined by a set of parameters, such as maximum
tree depth and binth. The maximum selection bit number is
fixed to 4. Figure 5 shows the generated subtree number in
KickTree under different parameter combinations for 100k
rules. Obviously, KickTree can produce a relatively stable
number of subsets by adjusting the construction parameters
for large size rule sets.

4.3 Memory Footprint
Figure 6 shows the memory footprint of KickTree and an-
other two algorithms. Experimental results show that Kick-
Tree requires storage space comparable to other algorithms
and the memory consumption increases almost linearly with
the rule set size. Even for rule sets up to 100k entries, Kick-
Tree can still construct decision trees in a few MegaBytes,
which is small enough to fit in the on-chip RAM (BRAM or
URAM) of mid-range FPGAs.

4.4 Memory Access
Traversing a decision tree node, a rule or a tuple table is
treated as one memory access in our evaluation. Memory
access is classified into average memory access and worst-
case memory access, the former refers to the tree average
depth and the latter refers to the maximum tree depth plus
leaf depth. Since each subtree runs concurrently in hardware,
the overall performance mainly depends on the tree with

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Yao Xin, et al.

4
6

8
10

4
6

8
10

0
10
20
30
40
50
60

maxDepth

S
u

b
s
e

t

binth

(a) ACL_100k

4
6

8
10

4
6

8
10

0

20

40

60

80

maxDepth

S
u

b
s
e

t

binth

(b) FW_100k

4
6

8
10

4
6

8
10

0

5
10
15

20

25

maxDepth

S
u

b
s
e

t

binth

(c) IPC_100k
Figure 5: Number of subsets for different rule sets

1

10

100

1000

10000

ACL

 TabTree CutSplit KickTree

FW IPC

1k 10k 100k 1k 10k 100k 1k 10k 100k

(KB)

Figure 6: Memory footprint

1

10

100

1000

ACL

 TabTree_Avg CutSplit_Avg KickTree_Avg TabTree_Worst CutSplit_Worst KickTree_Worst

FW IPC

1k 10k 100k 1k 10k 100k 1k 10k 100k

Figure 7: Average memory access and worst-case memory access

the worst performance. Thus we compare the trees with the
worst memory access among the algorithms. Figure 7 shows
the memory access of KickTree and another two algorithms.
It is obvious that KickTree is significantly better than others
in most rule sets, in terms of average access and worst-case
access. Specifically, compared with TabTree and CutSplit,
KickTree achieves 1.2 times and 0.99 times reduction in as-
pect of average access, and reaches 2.14 times and 3.09 times
improvement in aspect of worst-case access, on average.

4.5 Incremental Update Performance
The incremental update time ismeasured as the time required
to execute a rule insertion or deletion. For each rule set, we
generate a series of update operations by randomly shuffling
the rules. Since CutSplit does not support incremental rule
update, KickTree is only compared with TabTree. Figure 8
shows that KickTree has achieved an average of 1.21 MUPS
(Millions of Update Per Second) in software simulations,
which is in the same order of magnitude as that of TabTree
and is sufficient in actual application scenarios.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

 Average time

100k100k10k 10k10k100k 1k1k1k

ACL IPCFW

us MUPS

0

1

2

3

4
 Throughput

(a) KickTree

0.0

0.2

0.4

0.6

0.8

1.0
 Average time

100k100k10k 10k10k100k 1k1k1k

ACL IPCFW

us MUPS

0

1

2

3

4

5

6
 Throughput

(b) TabTree
Figure 8: Update Performance

5 CONCLUSION AND FUTUREWORK
Aiming at customizing an FPGA-friendly updatable packet
classifier, we propose KickTree, an evenly distributed and
worst-case bounded decision tree scheme designed by tak-
ing the hardware features into consideration. In the future,
KickTree will be improved with more balanced rule mapping
and a smaller number of subtrees by reinforcement learning.
Moreover, the corresponding hardware architecture will be
designed and implemented on FPGA.

KickTree: A Recursive Algorithmic Scheme for Packet Classification... ANCS ’21, December 13–16, 2021, Layfette, IN, USA

REFERENCES
[1] Florin Baboescu, Sumeet Singh, and George Varghese. 2003. Packet

classification for core routers: Is there an alternative to CAMs?. In IEEE
INFOCOM.

[2] Florin Baboescu and George Varghese. 2001. Scalable packet classifi-
cation. ACM SIGCOMM Computer Communication Review 31, 4 (2001),
199–210.

[3] Gordon Brebner. 2009. Packets everywhere: The great opportunity for
field programmable technology. In IEEE FPT.

[4] Yeim-Kuan Chang. 2008. Efficient multidimensional packet classifica-
tion with fast updates. IEEE Trans. Comput. 58, 4 (2008), 463–479.

[5] Yeim-Kuan Chang and Chun-Sheng Hsueh. 2015. Range-enhanced
packet classification design on FPGA. IEEE Transactions on Emerging
Topics in Computing 4, 2 (2015), 214–224.

[6] James Daly and Eric Torng. 2017. TupleMerge: Building Online Packet
Classifiers by Omitting Bits. In IEEE ICCCN.

[7] James Daly and Eric Torng. 2018. ByteCuts: Fast Packet Classification
by Interior Bit Extraction. In IEEE INFOCOM.

[8] Andreas Fiessler, Sven Hager, Björn Scheuermann, and Andrew W
Moore. 2016. HyPaFilter: A versatile hybrid FPGA packet filter. In
ACM/IEEE ANCS.

[9] Jeffrey Fong, Xiang Wang, Yaxuan Qi, Jun Li, and Weirong Jiang. 2012.
ParaSplit: A scalable architecture on FPGA for terabit packet classifi-
cation. In IEEE Hot Interconnects.

[10] Thilan Ganegedara and Viktor K Prasanna. 2012. StrideBV: Single chip
400G+ packet classification. In IEEE HPSR.

[11] Filippo Geraci, Marco Pellegrini, Paolo Pisati, and Luigi Rizzo. 2005.
Packet classification via improved space decomposition techniques. In
IEEE INFOCOM.

[12] GitHub. 2021. https://github.com/wenjunpaper/KickTree.
[13] Pankaj Gupta and Nick McKeown. 1999. Packet classification on

multiple fields. ACM SIGCOMM Computer Communication Review 29,
4 (1999), 147–160.

[14] Pankaj Gupta and Nick McKeown. 1999. Packet classification using
hierarchical intelligent cuttings. In IEEE Hot Interconnects.

[15] P. Gupta and N. McKeown. 2000. Classifying packets with hierarchical
intelligent cuttings. IEEE Micro 20, 1 (2000), 34–41.

[16] Peng He, Gaogang Xie, Kavé Salamatian, and Laurent Mathy. 2014.
Meta-algorithms for software-based packet classification. In IEEE
ICNP.

[17] Cheng-Liang Hsieh and Ning Weng. 2016. Many-field packet classifi-
cation for software-defined networking switches. In ACM/IEEE ANCS.

[18] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman.
2019. The P4-NetFPGA Workflow for Line-Rate Packet Processing. In
ACM/SIGDA FPGA.

[19] Weirong Jiang and Viktor K Prasanna. 2009. Field-split parallel archi-
tecture for high performance multi-match packet classification using
FPGAs. In ACM SPAA.

[20] Weirong Jiang and Viktor K Prasanna. 2012. Scalable Packet Classi-
fication on FPGA. IEEE Transactions on Very Large Scale Integration
Systems 20, 9 (2012), 1668–1680.

[21] TV Lakshman and Dimitrios Stiliadis. 1998. High-speed policy-based
packet forwarding using efficient multi-dimensional range matching.
In ACM SIGCOMM.

[22] Chenglong Li, Tao Li, Junnan Li, Zilin Shi, and Baosheng Wang. 2020.
Enabling Packet Classification with Low Update Latency for SDN
Switch on FPGA. Sustainability 12, 8 (2020), 1–16.

[23] Wenjun Li and Xianfeng Li. 2013. HybridCuts: A scheme combin-
ing decomposition and cutting for packet classification. In IEEE Hot
Interconnects.

[24] Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. 2018. CutSplit: A
Decision-Tree Combining Cutting and Splitting for Scalable Packet
Classification. In IEEE INFOCOM.

[25] Wenjun Li, Tong Yang, Yeim-Kuan Chang, Tao Li, and Hui Li. 2019.
TabTree: A TSS-assisted Bit-selecting Tree Scheme for Packet Classifi-
cation with Balanced Rule Mapping. In ACM/IEEE ANCS.

[26] Wenjun Li, Tong Yang, Ori Rottenstreich, Xianfeng Li, Gaogang Xie,
Hui Li, Balajee Vamanan, Dagang Li, and Huiping Lin. 2020. Tuple
Space Assisted Packet Classification with High Performance on Both
Search and Update. IEEE Journal on Selected Areas in Communications
38, 7 (2020), 1555–1569.

[27] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural Packet
Classification. In ACM SIGCOMM.

[28] Hyesook Lim and So Yeon Kim. 2010. Tuple pruning using bloom
filters for packet classification. IEEE Micro 30, 3 (2010), 48–59.

[29] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: Enabling Innovation in Campus Networks. ACM
SIGCOMM Computer Communication Review 38, 2 (mar 2008), 69–74.

[30] Chad R. Meiners, Alex X. Liu, and Eric Torng. 2010. Hardware Based
Packet Classification for High Speed Internet Routers (1st ed.). Springer
Publishing Company, Incorporated.

[31] Salvatore Pontarelli and et al. 2019. FlowBlaze: Stateful Packet Pro-
cessing in Hardware. In USENIX NSDI.

[32] Yaxuan Qi, Lianghong Xu, Baohua Yang, Yibo Xue, and Jun Li. 2009.
Packet classification algorithms: From theory to practice. In IEEE IN-
FOCOM.

[33] Yun R Qu and Viktor K Prasanna. 2015. High-performance and dy-
namically updatable packet classification engine on FPGA. IEEE Trans-
actions on Parallel and Distributed Systems 27, 1 (2015), 197–209.

[34] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. 2020. A
Computational Approach to Packet Classification. In ACM SIGCOMM.

[35] Tong Shen, Gaogang Xie, XinWang, Zhenyu Li, Xinyi Zhang, Penghao
Zhang, and Dafang Zhang. 2018. RVH: Range-Vector Hash for Fast
Online Packet Classification. Techical Report of ICT (2018).

[36] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. 2003.
Packet classification using multidimensional cutting. In ACM SIG-
COMM.

[37] Haoyu Song, Jonathan Turner, and Sarang Dharmapurikar. 2006.
Packet classification using coarse-grained tuple spaces. In ACM/IEEE
ANCS.

[38] Venkatachary Srinivasan, Subhash Suri, and George Varghese. 1999.
Packet Classification using Tuple Space Search. In ACM SIGCOMM.

[39] Venkatachary Srinivasan, George Varghese, Subhash Suri, and Marcel
Waldvogel. 1998. Fast and Scalable Layer Four Switching. In ACM
SIGCOMM.

[40] David E Taylor. 2005. Survey and taxonomy of packet classification
techniques. Comput. Surveys 37, 3 (2005), 238–275.

[41] David E Taylor and Jonathan S Turner. 2005. Scalable packet classifica-
tion using distributed crossproducing of field labels. In IEEE INFOCOM.

[42] David E Taylor and Jonathan S Turner. 2007. Classbench: A packet
classification benchmark. IEEE/ACM Transactions on Networking 15, 3
(2007), 499–511.

[43] Balajee Vamanan, Gwendolyn Voskuilen, and TN Vijaykumar. 2010. Ef-
fiCuts: Optimizing Packet Classification for Memory and Throughput.
In ACM SIGCOMM.

[44] Balajee Vamanan, Gwendolyn Voskuilen, and TN Vijaykumar. 2011.
EffiCuts: optimizing packet classification for memory and throughput.
ACM SIGCOMM Computer Communication Review 41, 4 (2011), 207–
218.

[45] Website. 2021. http://www.wenjunli.com/KickTree.

https://github.com/wenjunpaper/KickTree
http://www.wenjunli.com/KickTree

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Yao Xin, et al.

[46] Thomas YC Woo. 2000. A modular approach to packet classification:
Algorithms and results. In IEEE INFOCOM.

[47] Yang Xu, Zhaobo Liu, Zhuoyuan Zhang, and H. Jonathan Chao. 2014.
High-Throughput and Memory-Efficient Multimatch Packet Classifi-
cation Based on Distributed and Pipelined Hash Tables. IEEE/ACM
Transactions on Networking 22, 3 (2014), 982–995.

[48] Sorrachai Yingchareonthawornchai, James Daly, Alex X Liu, and Eric
Torng. 2016. A sorted partitioning approach to high-speed and fast-
update OpenFlow classification. In IEEE ICNP.

[49] Sorrachai Yingchareonthawornchai, James Daly, Alex X Liu, and Eric
Torng. 2018. A Sorted-Partitioning Approach to Fast and Scalable
Dynamic Packet Classification. IEEE/ACM Transactions on Networking
26, 4 (2018), 1907–1920.

	Abstract
	1 Introduction
	2 Backgroud and Related Work
	2.1 The Packet Classification Problem
	2.2 Decision Tree based Algorithms
	2.3 Hardware-specific Solutions

	3 Our Proposed Approach
	3.1 Ideas & Framework
	3.2 Bit-selecting Decision Tree
	3.3 Evenly-distributed Tree Construction
	3.4 A Working Example
	3.5 Packet Classification & Rule Update

	4 Preliminary Evaluation
	4.1 Experiment Methodology
	4.2 Subset Number
	4.3 Memory Footprint
	4.4 Memory Access
	4.5 Incremental Update Performance

	5 Conclusion and Future Work
	References

