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Abstract—FPGA has been recognized as an attractive acceler-
ator for line-speed packet classification in SmartNIC due to
its ability to reconfigure and provide massive parallelism. As
a promising algorithmic approach that can fully exploit the
FPGA characteristics, decision tree based packet classification
on FPGA has been actively investigated in the past decade.
However, most of them suffer from unbalanced tree structures
with unpredictable depths under certain rule sets, so the
potential of FPGA may not be brought into full play. Worse
still, few of them can support efficient rule updates on-the-fly,
which is highly required in virtualized data centers. To address
these issues, we design and implement an efficient hardware ar-
chitecture based on the recently proposed KickTree algorithm,
which consists of multiple balanced trees with bounded depth.
A strategy of multi-PE (processing element), parallel search,
and serial update is adopted to decouple the search and update
process. The parsing of multiple tree search results adopts a
modular and hierarchical design, supporting architecture with
various tree numbers. Additionally, incremental rule updates
can be achieved simply by traversing all PEs in one pass,
with little and bounded impact on rule searching. Experimental
results on FPGA show that our design can achieve an average
classification throughput of 182.6 MPPS and an average update
throughput of 3.1 MUPS for various 100k-scale rule sets.

Index Terms—FPGA, Packet Classification, Decision Tree

1. Introduction
With the diversification of Internet applications, data cen-

ters have become efficient and promising infrastructures for
deploying diverse network services and applications (e.g.,
video streaming, cloud computing). However, these applica-
tions and services typically place multiple resource demands
on the underlying infrastructure, which traditional data cen-
ters cannot meet. In such circumstances, services based
on the softwarization and virtualization paradigms, such
as Network Functions Virtualization (NFV) and Software
Defined Networking (SDN), have emerged as a solution for
data centers that can provide flexibility by implementing a
software-based network over physical infrastructure [1], [2].

Virtualization has enabled tens to hundreds of virtual
machines (VMs) per server in data centers using multi-
core CPU technology. However, the network functions of
the virtual network protocol stack in data centers are up-
dated frequently and increased all along. As a result, packet
processing functions, such as packet classification, rout-
ing decisions, encryption/decryption, etc., have increased
exponentially. Worse still, x86 servers not optimized for
packet processing are inefficient to implement in software.
To address this issue, SmartNIC based on specific hard-
ware platforms such as Network Processor (NP) and Field

Programmable Gate Array (FPGA) has been increasingly
adopted to offload these functions. Among these, packet
classification is a fundamental and essential task, which is to
discriminate packets into separate "flows" and enables dif-
ferentiated functionalities [3], so that all packets belonging
to the same flow will be processed similarly.

Among various hardware platforms, FPGA has been
regarded as promising hardware to realize packet processing
in data center scenarios, thanks to its flexible programma-
bility, high performance, and rich capacity [4], [5], [6].
The majority of FPGA-related work is based on bit-vector
(BV) decomposition and decision trees. However, almost
none of these satisfy the demands of the increasing scale of
rules and frequent rule updates brought by NFV and SDN.
Specifically, the BV decomposition method requests vast
distributed RAMs for applied vectors [7], [8], [9], [10]. Thus,
only small-scale rule sets can be supported by architectures
of this type due to the limited hardware resources, although
rule update is well supported. On the other hand, although
decision tree based approaches are capable of performing
large-scale rule lookups, dynamic rule update remains a
challenge due to: i) the rule replication problem, as it is
difficult to ensure atomicity and consistency in the update
process; and ii) the overly scattered storage in pipelined
architectures [11], [12], [13], [14], [15], [16], [17], [18].

To address the above issues, we propose an updatable
FPGA-based packet classifier to meet the requirements of
network virtualization. The hardware architecture is devel-
oped based on our recently proposed algorithmic packet
classification scheme called KickTree [19], a multi-tree
algorithm without any rule replications. For high lookup
throughput, we adopt multiple processing elements (PEs)
running in parallel to perform rule search, and multiple
computing cores of the classifier enter into force at the
top layer. In order to support incremental rule updates, we
adopt a strategy of centralized memory and serial access in
each PE rather than an entire pipeline. With respect to the
organization of multiple PEs in each classifier, a method
of parallel search and serial update is proposed to decouple
the search and update process. The experimental results after
implementation on a Xilinx Ultrascale+ FPGA show that, for
various 100k-scale rule sets generated by ClassBench [20],
it can achieve an average classification throughput of 182.6
MPPS and an update throughput of 3.1 MUPS. The major
contributions of this paper are as follows:

• The search result resolution for multiple PEs with
unpredictable numbers is designed in a modularized
manner through the hierarchical composition of the
two-input result resolvers as the fundamental unit. In
this method, rule sets with any number of trees can be
supported.
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TABLE 1: Example rule set with four IPv4 header fields
rule id priority src_addr (SA) dst_addr (DA) src_port (SP) dst_port (DP) action
R1 13 228.128.0.0/9 124.0.0.0/7 119:119 0:65535 action1
R2 12 223.0.0.0/9 38.0.0.0/7 20:20 1024:65535 action2
R3 11 175.0.0.0/8 0.0.0.0/1 53:53 0:65535 action3
R4 10 128.0.0.0/1 37.0.0.0/8 53:53 1024:65535 action4
R5 9 0.0.0.0/2 225.0.0.0/8 123:123 0:65535 action5
R6 8 107.0.0.0/8 128.0.0.0/1 59:59 0:65535 action6
R7 7 0.0.0.0/1 255.0.0.0/8 25:25 0:65535 action7
R8 6 106.0.0.0/7 0.0.0.0/0 0:65535 53:53 action8
R9 5 160.0.0.0/3 252.0.0.0/6 0:65535 0:65535 action9
R10 4 0.0.0.0/0 254.0.0.0/7 0:65535 124:124 action10
R11 3 128.0.0.0/2 236.0.0.0/7 0:65535 0:65535 action11
R12 2 0.0.0.0/1 224.0.0.0/3 0:65535 23:23 action12
R13 1 128.0.0.0/1 128.0.0.0/1 0:65535 0:65535 action13

• To avoid repeating updates in multiple PEs, the update
process is decoupled from the search one and is per-
formed in a serial fashion between PEs.

• In order to prevent all tree PEs from failing to update,
an update guarantee scheme is designed, which is sup-
plementing with a linear search based PE as the final
layer without compromising the overall performance.

The rest of the paper is organized as follows. Section 2
summarizes background and related work briefly. Section 3
provides a summation of KickTree algorithm. Section 4
illustrates the hardware architecture. Section 5 shows ex-
perimental results. Finally, Section 6 draws the conclusion.

2. Background and Related Work

2.1. The Packet Classification Problem

Packet classification is classifying network traffic in fine
granularity according to multi-field packet header informa-
tion and a pre-established classifier which consists of a set
of rules. Each rule r has d components, each represented
by ri, together with an action to be taken in case of a
match. ri is a regular expression on the i field of the packet
header, which could be a prefix, a range, or an exact value.
A packet p = (p1, p2, ..., pd) is said to match rule r if
∀i, pi ∈ ri. Each rule is associated with a priority, indicating
the degree of importance. If a packet conforms to more than
one rule, the low priority rules will give way to the highest
priority rule. Table 1 shows an example rule set with four
IPv4 header fields. As a widely studied bottleneck, packet
classification has attracted extensive research attention, and
many algorithmic approaches have been proposed in the past
two decades [21], such as decision tree [15], [17], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], decomposition [36], [37], [38], and Tuple Space Search
(TSS) [39], [40], [41], [42].

Despite more than twenty years of research, the software
packet classification algorithm still has a severe performance
bottleneck, which makes it challenging to meet the ever-
increasing line-speed forwarding requirements. As a re-
sult, hardware using Ternary Content Addressable Memory
(TCAM) has been the dominant implementation of packet
classification in the industry. However, TCAM has low area
efficiency, high energy consumption, and high cost [43],
[44], [45], [46], [47], [48], severely limiting its scalability
in SmartNIC. Under such circumstances, FPGA has been
recognized as an attractive accelerator for algorithmic packet
classification in SmartNIC due to its flexible programmabil-
ity, high performance, and productive capacity. Next, we will
review some related FPGA designs for packet classification.

Figure 1: The algorithmic framework of KickTree [19].

2.2. FPGA-based Packet Classification Solutions

According to the different algorithm techniques, the
current FPGA-based algorithmic packet classification can
generally be divided into two categories: decision tree based
and decomposition-based designs. Therefore, we will focus
on these two approaches to review the related work on
FPGA.

Decision Tree based Designs on FPGA: The working
scheme of decision tree based methods involves partitioning
the search space recursively into several smaller sub-regions
based on information from one or more fields in the rules
until each sub-region contains the number of rules below a
certain threshold (i.e., binth). The vast majority of decision
tree based FPGA architectures have adopted a fully pipelined
design, which can benefit from the high frequency and high
throughput. The primary concerns of such a method are
memory reduction and performance enhancement [11], [15],
[49], [50], [51], [52]. However, despite various techniques
to minimize rule replication, this problem persists, leading
to inefficient FPGA memory consumption, and making dy-
namic rule updates (i.e., without precomputing the mem-
ory content or rebuilding trees) difficult. Rule updates can
only be achieved by calculating what storage content to
change ahead of time and then sequentially issuing write
bubbles to the pipeline stages. Furthermore, most decision
tree algorithms are intended for software without considering
hardware characteristics. Thus, the migration and mapping
process from software to hardware would sacrifice some
intrinsic advantages.

Decomposition-based Designs on FPGA: The princi-
ple of the decomposition-based method is to decompose a
complex multi-domain search problem into multiple simple
single-domain concurrent searches, which can make full use
of the parallel characteristics of FPGA. Most of the current
decomposition implementations on FPGA are based on the
well-known BV algorithm [36], which splits each field into
multiple subfields and can be searched in a pipelined manner
in all subfields [8], [9], [10], [17], [53]. The BV-based design
can sustain high throughput for packet classification and
fully support dynamic rule updates. However, this method
essentially lists all possible matching combinations of bits in
rules exhaustively. Therefore, rules with wildcards consume
more hardware, especially logical resources. This feature
always constrains the scale of rule sets accommodated by
FPGAs.
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Figure 2: A working example of KickTree [19], with Max_Depth = 2, Max_Selecting_Bits = 2, and binth = 1.

As seen from the above description, although FPGA has
been increasingly recognized as a promising platform for
algorithmic packet classification in the last decade, existing
FPGA-based packet classifiers cannot satisfy the burgeoning
needs proposed by virtualized data centers, such as large-
scale rule sets and frequent rule updates.

3. Algorithm Overview

Since our aim in this work is to present a novel FPGA
hardware design based on our recently proposed algorithmic
KickTree [19], which is a multi-tree algorithm dedicated
to FPGA, we will first give some technical review of the
KickTree algorithm in this section from the following two
aspects:

Why is FPGA Hungry for Decision Trees from
Scratch? First, the previously designed FPGA solutions
based on decision trees could hardly support dynamic rule
updates due to: i) the rule replication problem that makes
it very hard to ensure atomicity and consistency during the
update; and ii) the overly scattered storage in fully pipelined
architectures. Second, the vast majority of existing FPGA
solutions are based on off-the-shelf algorithms that are not
tailored to hardware features. Furthermore, the migration and
mapping process from software to hardware will sacrifice
some inherent advantages due to the distinctions in char-
acteristics between software and hardware, resulting in the
potential of FPGA not being fully realized. In response to the
above problems, we redesigned a hardware-targeted algo-
rithm KickTree, which builds a few worst-case bounded trees
without any rule replications and takes appropriate hardware
characteristics into account. The algorithmic framework of
KickTree is shown in Figure 1.

How to Build Hardware-friendly Trees in KickTree?
KickTree first converts each range field into a Longest
Common Prefix [54], [55], [56], allowing each rule to be
represented by a sequence of ternary strings (i.e., 0, 1, wild-
card). After that, several balanced trees of bounded depth
are constructed in a recursive manner, consisting of two key
steps: 1) Tree building by bit-selecting. Non-wildcard bits
are dynamically extracted from all possible header fields
using a locally greedy strategy for shallow and balanced
tree purposes; 2) Rule sifting. Rules that do not meet the
bit selection conditions (e.g., the rule value for the selected
bit position is a wildcard) or rules that exceed binth in leaf
nodes are "kicked out" from the current tree. If there are
still rules left after building the current tree, the same method
would be utilized to construct the decision tree continuously,
and the kicked-out rules would be retained for building the
next tree. This process continues until there are no more
rules. Figure 2 illustrates a KickTree classifier construction
example for the rules given in Table 1.

4. Hardware Design

4.1. Design Overview

While the KickTree algorithm appears to be a good fit for
FPGA, there are still many challenges in concrete FPGA im-
plementation because the most widely studied pure-pipeline
designs can hardly support dynamic rule updates without
precomputing memory content. In addition, as a multi-tree
scheme, how to efficiently collect and parse the results of
multiple trees and how to cope with the relationship between
classification and update remains challenging. Therefore,
to fully support dynamic rule updates without sacrificing
lookup performance for large-scale rule sets (e.g., 100k), we
prefer to design a new hardware architecture from scratch
rather than use a classic pure pipeline design, so that the
potential of the KickTree algorithm can be fully unleashed.
Next, we will introduce the top-level architecture and storage
organization dedicated to KickTree. After that, the detailed
architectural design of each search tree PE is elaborated, fol-
lowed by a hierarchical concurrent result collection scheme.
Finally, we present the rule update mechanism.

4.2. Top-level Architecture

The top-level architecture of each classifier adopts a
parallel-search, serial-update strategy, as illustrated on the
right side of Figure 3. Each processing element (PE) cor-
responds to a tree in Figure 1. Each PE processes rule
search and update separately. As a result, there are two
interfaces for receiving commands for rule search and
update and two interfaces for exporting search and up-
date results, respectively. The input command is made
up of a packet/rule along with an operation code of
SEARCH (for packet), or DELETE/INSERT (for rule),
while the result consists of the matched rule ID and re-
sult code of RULE_FOUND, RULE_NOT_FOUND, UP-
DATE_SUCCESS, UPDATE_FAILURE, etc.

The top-level classifier handles the two input commands
differently: the search command is delivered to all PEs for
parallel execution, whereas the update command is only
distributed to the first PE and executed serially in subsequent
PEs. Up until the last resolver provides the final result, the
results of all PE searches are parsed and merged in pairs by
the result resolver level by level.

The update results, however, go through each PE in turn.
The rule update operation is continued in the current PE
if the update in the preceding PEs fails, and the result is
passed until the update is successful in a particular PE.
From a high-level perspective, each classifier can operate
independently. Thus, as long as hardware resources allow,
multiple computing cores can enter into force on the FPGA
to improve the overall performance.
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Figure 3: The architecture of the classifier.
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Figure 4: The storage organization of search tree.

4.3. Search Tree Storage Organization

As shown in Figure 4, the storage organization of each
search tree is cached in two centralized memories: node table
RAM and rule table RAM. The entries of these memories
constitute three types of unidirectional chained lists. The
intermediate node table and leaf node entries represent in-
termediate nodes (including the root node) and leaf nodes,
respectively. And each rule table entry represents a specific
rule. Each leaf node is associated with a rule subset, and the
collection of subsets of all leaf nodes is cached in the rule
table RAM.

Node Table Entry: The node tables in Figure 4 show
the case of the selectable bit number being 3, then each
node has a maximum of 8 child nodes. The first bit, is_leaf,
indicates if the current node type is intermediate or leaf.
The node_valid bit indicates if the current node is valid
(i.e., 0 means there is no rule associated with this node).
Unlike the leaf node entry, the intermediate node table has
bits field[i] (i = 1, 2, 3) for selecting rule dimensions, and
One-Hot Encoding mask[i] (i = 1, 2, 3) for bit selection.
The child_addr records the next-level child node address
determined by the selected 3 bits. When a leaf node table
is reached, 1st_rule_addr is referenced to locate the rule
table RAM address of the first rule in the relevant subset.

Rule Table Entry: Each rule table entry corresponds to
a rule in the leaf node. This table can be scaled to different
format rules, however it only illustrates the situation of the
5-tuple format here. The bit next_valid is used to link rules
within a leaf node by indicating whether the next rule is
valid or not. Each mask is transferred to ranges with two
endpoints in advance and documented in this entry.

4.4. Search Tree PE
Instead of a fully-pipelined design, the architecture of

the search tree PE adopts a centralized memory and serial
access method, as illustrated on the left side of Figure 3. The
Node Searcher traverses the tree nodes level by level from
the root by reading linked node table entries from memory.
When a valid leaf node is found, the rule subset address
will be delivered to the Rule Processor, which will linearly
search the rule table RAM and take the appropriate actions of
search, delete, or insert, according to the operation code. To
enhance memory utilization, we implement multiple search
units to work in parallel, since they can access the memory
in different time slots with limited query time. Furthermore,
Round Robin ensures the arbitration between multiple units
in both modules as each unit has the same priority.

PEs are designed to process rules and packets simi-
larly by sharing hardware resources. In particular, the Node
Searcher processes rules using the lower endpoint of the
range identical to the packet format as input. At the same
time, the Rule Processor handles the specific operations
of packets (search) and rules (delete/insert) with different
modules. In addition, each PE implements an update bypass
FIFO which caches successful update results and forwards
them, bypassing the tree. The Node Searcher, in contrast,
processes only unsuccessful update results in preceding PEs.
This mechanism avoids repeated updates of multiple PEs and
reduces the delay of serial updates.

4.5. Hierarchical Concurrent Results Collection
For the purpose of rapid development and hardware

implementation of a classifier with arbitrary tree numbers,

24

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 07:57:57 UTC from IEEE Xplore.  Restrictions apply. 



TABLE 2: Hardware configurations for different rule sets

Rule set
Tree

number

Number of nodes/rules RAM depth (bit) RAM type
1st tree 2nd tree 3rd tree 1st tree 2nd tree 3rd tree 1st tree 2nd tree 3rd tree

node rule node rule node rule u_node l_node rule node rule node rule u_node l_node rule node rule node rule

acl1_100k 10 38934 86055 3185 9684 638 3260 13 15 17 12 14 10 12 Block Block Ultra Ultra Ultra Dist Block
acl2_100k 21 5259 15781 2943 9331 2169 12407 0 13 14 12 14 12 14 NA Ultra Ultra Ultra Ultra Ultra Ultra
acl3_100k 9 35228 82351 6930 15561 394 1230 12 15 17 13 14 9 12 Ultra Ultra Ultra Block Block Dist Block
acl4_100k 10 35556 82970 3811 10776 946 3206 12 15 17 12 14 10 12 Block Block Ultra Block Ultra Dist Ultra
acl5_100k 3 30654 92449 654 2306 1 1 0 15 17 10 12 1 7 NA Block Ultra Block Block Dist Dist
ipc1_100k 6 37483 90553 4030 8480 43 160 13 15 17 12 14 6 8 Ultra Block Ultra Block Ultra Dist Dist
ipc2_100k 4 9363 81920 2482 11009 4680 7071 0 14 17 12 14 13 13 NA Ultra Ultra Dist Block Block Ultra
fw1_100k 12 37449 66448 6239 18121 824 3109 13 15 17 13 15 10 12 Ultra Block Ultra Block Ultra Dist Ultra
fw2_100k 5 18473 80808 7207 13059 492 2069 11 14 17 13 14 9 12 Block Block Ultra Ultra Block Dist Block
fw3_100k 13 18725 63115 5195 15224 682 1998 12 14 16 13 15 9 12 Block Block Ultra Ultra Ultra Block Block
fw4_100k 16 18925 57688 3411 7953 2037 3868 12 14 16 12 14 11 12 Block Ultra Ultra Block Ultra Block Block
fw5_100k 14 37448 54157 9104 25692 471 2578 13 15 16 14 15 9 12 Block Ultra Ultra Block Ultra Block Block

we introduce the idea of modularity in the top-level archi-
tecture design. Since the number of trees can be random
and unpredictable for any given set of rules, search result
collection and priority parsing for multiple trees would be a
challenge. We employ a multi-level result resolver with a 2-
input result resolver as the fundamental component to over-
come this problem. Accordingly, the results of the search
trees are parsed hierarchically in pairs. Empty trees are used
to supplement the number of search trees to powers of 2.
For example, the number of resolver levels for a classifier
with N trees (N > 1) would be log2(N − 1) + 1.

The architecture of the elementary 2-input result resolver
is shown in Figure 5. It aims to solve two issues: 1) The
classifier may produce out-of-order search results due to
the existence of multiple search units and the different
processing delays of each packet; 2) The speed at which
discrete trees produce results is inconsistent. According to
the first issue, each input channel has an independent RAM
to reorder the out-of-order results, and the low-order bits of
the packet ID act as the write address. Once a predetermined
number of results have been written, the results of both
channel are concurrently read in order and compared by
priority. Rules with higher priority are output to the FIFO
controlled by the bus interface to the next level module.
The second issue is tackled by a dataflow balancer, which
dynamically monitors the amount of data flowing into the
two channels and controls the bus interface in real-time so
that the input speed of the results on both sides is roughly
equal.

For the purpose of resource-saving, the second channel
can be set to bypass mode, which is activated when the sec-
ond channel is connected to an empty tree. In bypass mode,
the reorder RAM will not be implemented. In addition, the
input bus handshake signal of the second channel is taken
over by the first channel, and the first RAM also replaces
the results that the reorder RAM should read out.

4.6. Rule Update Mechanism

Our hardware architecture supports real-time incremental
rule updates (e.g., deletion or insertion) without precomput-
ing memory contents as in pipelined designs. When perform-
ing rule updates in each PE, the Node Searcher caches the
complete information of up to two levels of traversed nodes.
Therefore, we can trace back two levels of nodes to modify
the contents of related tables.

From the top-level perspective of the classifier, update
commands and results pass sequentially through each PE.
If the result of the previous PE has been successful, no
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Figure 5: Modularized result resolver.
command will be passed to the tree. Instead, it will be
cached directly in the bypass FIFO along with the result and
continue to pass down until they are read from the last PE.
The packet classification procedure must be interrupted prior
to the update operation. Moreover, it is also preferable to
wait until the update command has traversed all PEs before
sending the subsequent one for the sake of maintaining
atomic consistency.

Due to the hardware’s difficulty in achieving the exact
dynamic tree reconstruction as in software, there may be an
update failure: a rule cannot be inserted into any tree. To
prevent this from happening, the last PE of each classifier
employs a linear search without the restriction of binth
to accommodate previously inserted failing rules. Figure 3
displays this feature. Nevertheless, this is merely a guarantee
mechanism. In practice, it is rare for all previous PE updates
to fail, especially when the number of PEs is large.

In our experimental evaluation, we generate an aver-
age of approximately 10 PEs for 100K rule sets, and the
first three PEs can handle practically all update activities.
However, it should be noted that when the rules for linear
search in the last PE accumulate to a certain extent over a
long period, it is necessary and recommended to reconstruct
the classifier as a whole or follow the above algorithm to
construct the tree recursively for the rules in the last PE,
to avoid this auxiliary update module from turning into the
throughput bottleneck of the system.
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TABLE 3: Resource utilization for different rule sets

Rule set
Core
num

CLB LUTs
(1182240)

CLB
Registers
(2364480)

BRAM
(2160)

URAM
(960)

LUTRAM
(591840)

Max
frequency

(MHz)

acl1_100k 6 607596 819039 1815 762 125232 200.08
acl2_100k 6 944525 1263251 2010 738 35574 200.12
acl3_100k 6 589951 802639 1494 846 108984 200.00
acl4_100k 6 573805 741532 1758 816 130818 200.36
acl5_100k 6 326950 275717 1635 576 173262 193.46
ipc1_100k 6 333575 472205 1593 762 46608 199.88
ipc2_100k 7 365928 415700 1365 684 142632 200.56
fw1_100k 6 835036 974454 1716 936 248268 192.83
fw2_100k 7 330732 465005 1519 812 47190 200.20
fw3_100k 6 896606 1049058 1170 564 271266 200.68
fw4_100k 6 84444 1243527 1536 600 82080 201.01
fw5_100k 6 799875 1101059 1524 744 13320 200.76

5. FPGA Implementation Result

5.1. Experiment Setup

In the experimental evaluation, we focus on the perfor-
mance of large-scale rule sets as they are increasingly in
demand in emerging data centers. ClassBench [20] is utilized
to generate three types of rule sets according to the default
parameters, namely ACL, FW, and IPC, all of which are
100k in size. Specifically, 12 rule sets are generated based
on 12 seed parameter files (i.e., 5 ACLs, 5 FWs, and 2 IPCs).
The design is developed by Vivado 2021.2 tool and evaluated
on a Xilinx Virtex UltraScale+ VU9P FPGA equipped with
extensive Ultra RAMs. Multiple computing cores can be
instantiated by taking advantage of this property to achieve
high performance.

In the following evaluations, the number of selectable
bits, maximum tree depth, and binth (the threshold for
the number of leaf node rules) are set to 3, 8, and 10,
respectively. The numbers of search units in Node Searcher
and Rule Processor in each search tree PE are set to 5 and
6 separately. Additionally, we further reduce the number of
trees by increasing binth and the maximum depth settings
for trees generated later. This adjustment is based on an
observation: the first two trees concentrate most of the rules.

5.2. Storage Configuration

In most cases, the first PE has the highest storage re-
quirements because it contains the majority of the rules.
On the other hand, the memory depth of an FPGA is a
power of 2. Therefore, to prevent excessive memory waste,
we divide the note table RAM and rule table RAM in the
first PE into two parts: upper_half and lower_half. In such
a manner, instead of reserving 2(n+1) storage depth when
2n + 1 entries are required, the actually implemented depth
can be 2n + 1 + Numspare, where the upper_half stores
entries with addresses greater than 2n while the lower_half
has a depth of 2n, and Numspare is the entry number of
the spare space allocated for rule update.

Because of the distinct characteristics of each rule set,
the resulting storage organizations are different. To achieve
the optimal performance for a specific rule set, hardware
configurations for various rule sets have been customized
and finely tuned, which are listed in Table 2. It mainly
shows the storage configuration of the first three trees,
which contain the vast majority of rules. RAM types include
Distributed (Dist for short), Block, and Ultra. The u_node
and l_node denote upper_half RAM and lower_half RAM,
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Figure 6: Classification and update throughput.
respectively. Because our hardware architecture supports
real-time rule updates, sufficient spare storage space should
be allocated for the search tree in each PE at the outset in
case there are more insertions than deletions.

5.3. Resource Utilization
Table 3 summarizes the number of accommodated com-

puting cores, resource usage, and maximum frequencies of
hardware implementations of various rule sets after they
are synthesized, placed, and routed. It is natural to note
that memory, including Ultra RAM and Block RAM, is the
most consumed FPGA resource. The minimum depths for
Block RAM and Ultra RAM are 512 and 4096, respectively.
Therefore, in the actual FPGA implementation, the Block
and Ultra RAM allocated by many small data structures
cannot be further split, resulting in the actual consumption of
on-chip resources in Table 3 much larger than the minimum
required capacity.

5.4. Throughput Evaluation
In this section, we evaluate the performance of our

FPGA implementation in terms of throughput, including
packet classification throughput and rule update throughput,
measured in MPPS (Million Packets Per Second) and MUPS
(Million Updates Per Second) as a unit. We calculate both
types of throughput by simulation. Explicitly speaking, we
first generate storage organization files consisting of node
tables and rule tables for a specific rule set. We then
simulate our architecture using these files at the maximum
frequency obtained in Section 5.3 to perform classifica-
tion/updates using packets/rules from trace/rules files. Clas-
sification throughput is the average of processing all syn-
thetic packet traces, while update throughput is obtained by
running randomly generated operations (including deletes,
inserts, and modifications) for a long time (e.g., 100 ms)
and calculating the average.

Figure 6 shows classification throughput and update
throughput with respect to the benchmark rule sets. Perfor-
mance varies according to different rule types. The classi-
fication throughput is distributed between 102.3 MPPS and
238.3 MPPS, with an average of 182.6 MPPS. Among them,
the classification throughput corresponding to the rule sets
of acl2_100k and fw4_100k lags far behind the performance
of other rule sets, mainly due to the bottleneck effect caused
by the excessive number of trees they generate. On the
other hand, with the exception of the acl2_100k rule set, the
range of update throughput does not fluctuate much, with an
average of 3.1 MUPS.
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TABLE 4: Latency for different rule sets

Rule set
Avg latency per

packet (ns)
Min latency

(ns)
Max latency

(ns)

acl1_100k 477.6 360 540
acl2_100k 648.5 450 825
acl3_100k 452.0 345 540
acl4_100k 477.0 374 554
acl5_100k 355.0 243 481
ipc1_100k 371.1 315 435
ipc2_100k 375.3 254 434
fw1_100k 517.1 358 638
fw2_100k 394.9 285 480
fw3_100k 480.6 329 658
fw4_100k 673.5 417 745
fw5_100k 483.1 359 613

5.5. Latency Evaluation

We have calculated different latency values per packet
for benchmark rule sets, including average latency, worst-
case and best-case latencies, and Table 4 lists the results.
Latency is closely related to several factors, such as the num-
ber of trees, the depth of the tree, the number of leaf node
rules, memory read latency, etc. Although our latency is not
very advantageous compared to some pure pipeline designs
with only a few stages, it is a trade-off to support dynamic
rule updates. Nevertheless, we aim to reduce latency in our
future work.

5.6. Comparison with Related Work

Among multiple FPGA-based decision tree schemes,
only [57] implements the evaluation of 100k rule sets. Two
pipelines are implemented by utilizing dual-port RAM, and
its throughput of packet classification reaches 352 MPPS,
418 MPPS, and 390 MPPS for ACL, FW, and IPC rules, re-
spectively. Although the classification performance is higher
than our implementation, it does not support rule updates,
a common drawback of most decision tree based methods.
Although [11] is claimed to be able to support on-the-fly
rule update, the details of leaf node deletion/creation and
intermediate node update are not discussed, and the cor-
responding hardware implementation is not proposed. The
work in [15] proposes the method of inserting write bubbles
to pipeline memories to enable rule updates. However, the
new contents of the memory are computed offline rather than
changing dynamically according to the on-the-fly update or-
ders as in our proposed method. As far as we know, only our
design has realized dynamic rule updates in implementation
without the need to precompute the updated contents of the
memory, compared with the previous decision tree based
FPGA designs.

On the other hand, most decomposition-based FPGA
implementations only support rule set scales of no more than
5k [9], [17], as this kind of method requires a large amount
of on-chip memory to implement bit vectors, although they
can achieve high performance in classifying packets. As
a result, these works are not comparable to our design
regarding the rule set scale. Furthermore, some designs
do not support range matching [8], [9]. The work in [58]
has range searching capabilities and supports dynamic rule
update updates but is still limited by the rule set size. In
contrast, our implementation can not only perform range
matching but also support dynamic rule updates.

6. Conclusion

The trend toward network virtualization in the data
center leads to widespread concern about the FPGA-based
SmartNIC due to its ability to reconfigure and provide
massive parallelism to offload fungible functions. Among
the offloaded functions by SmartNIC, the classification and
forwarding of network data packets are fundamental and
essential tasks. Although decision tree based packet clas-
sification on FPGAs has been extensively researched for a
decade, most of them are not only unbalanced but also have
unpredictable depth, so the potential of FPGA cannot be
brought into full play. Furthermore, due to rule replication
and a full pipeline, they also face the challenge of dynamic
update, which is highly desired in virtualized data centers.
In this paper, we design and implement an efficient hard-
ware architecture based on the recently proposed KickTree
algorithm, consisting of multiple balanced trees of bounded
depth, capable of entirely using the FPGA’s advantage.
Generally speaking, instead of a fully pipelined design,
we adopt an architecture of multi-PE, multiple computing
cores of the classifier on the uppermost level. We propose
a parallel-search and serial-update strategy for PEs in each
classifier to decouple the search and update process. The
parsing of multiple tree search results adopts a modular
and hierarchical design, supporting architectures with an
almost arbitrary number of trees. Furthermore, we design a
guarantee mechanism to guarantee the success of the update.
Experimental results show that it can achieve an average
throughput of 182.6 MPPS for classification and an average
throughput of 3.1 MUPS for the update for various 100k-
scale rule sets.
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