IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

1707

Recursive Multi-Tree Construction With Efficient
Rule Sifting for Packet Classification on FPGA

Yao Xin™, Wenjun Li*“, Chengjun Jia™, Xianfeng Li", Member, IEEE, Yang Xu"~, Member, IEEE,
Bin Liu™, Senior Member, IEEE, Zhihong Tian", Senior Member, IEEE,
and Weizhe Zhang"™, Senior Member, IEEE, ACM

Abstract— As a programmable accelerator, SmartNIC provides
more opportunities for algorithmic packet classification. Our
aim in this work is to achieve both line-speed rule search and
efficient rule update, two highly desired metrics for SDN data
plane. We leverage the parallelism offered by the FPGA in
SmartNIC following an algorithm/hardware co-design paradigm.
Particularly, we first design an algorithm that constructs multiple
trees for the rule set with a recursive rule sifting process.
Unlike traditional space-cutting-based multi-tree construction,
our rule sifting mechanism breaks the space constraints of rule-
to-tree mapping and enables bounded height on each tree, thus
providing the potential of bounded worst-case and line-speed
performance. We then design a flexible hardware architecture
with multiple systolic arrays that can be implemented in parallel
on FPGA. Each systolic array works as a coarse-grained pipeline,
and the multiple trees constructed earlier will be mapped onto

Manuscript received 23 March 2023; revised 15 September 2023;
accepted 18 October 2023; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor K. Chen. Date of publication 10 November 2023;
date of current version 18 April 2024. This work was supported in part
by the National Key Research and Development Program of China under
Grant 2022ZD0115303; in part by the National Natural Science Foundation
of China under Grant 62372123, Grant 62102203, Grant U20B2046, Grant
61872212, Grant 62150610497, Grant 62172108, Grant 62272258, Grant
62032013, and Grant 62061160489; in part by the Key-Area Research and
Development Program of Guangdong under Grant 2020B0101130003 and
Grant 2021B0101400001; in part by the Major Key Project of Peng Cheng
Laboratory under Grant PCL2023AS5-1 and Grant PCL2021A15; in part
by the 173 Program of China under Grant 2021-JCJQ-JJ-0483; and in part
by the China Postdoctoral Science Foundation under Grant 2020TQO0158,
Grant 2020M682825, and Grant PC2021037. This paper was presented in
part at the ACM/IEEE ANCS, Layfette, IN, USA, December 13-16, 2021
[DOI: 10.1145/3493425.3502752]. (Corresponding author: Wenjun Li.)

Yao Xin and Zhihong Tian are with the Cyberspace Institute of
Advanced Technology, Guangzhou University, Guangzhou 510006, China,
and also with the Peng Cheng Laboratory, Shenzhen 518055, China (e-mail:
xinyao @gzhu.edu.cn; tianzhihong @gzhu.edu.cn).

Wenjun Li is with the Peng Cheng Laboratory, Shenzhen 518055, China, and
also with the School of Engineering and Applied Sciences, Harvard University,
Allston, MA 02134 USA (e-mail: wenjunli@g.harvard.edu).

Chengjun Jia is with the Department of Automation, Tsinghua University,
Beijing 100084, China (e-mail: jcj18 @mails.tsinghua.edu.cn).

Xianfeng Li is with the International Institute of Next Generation Internet,
Macau University of Science and Technology, Taipa, Macau, China (e-mail:
xifli@must.edu.mo).

Yang Xu is with the School of Computer Science, Fudan University,
Shanghai 200433, China, and also with the Peng Cheng Laboratory, Shenzhen
518055, China (e-mail: xuy @fudan.edu.cn).

Bin Liu is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China, and also with the Peng Cheng
Laboratory, Shenzhen 518055, China (e-mail: liub@mail.tsinghua.edu.cn).

Weizhe Zhang is with the Peng Cheng Laboratory, Shenzhen 518055,
China, and also with the School of Cyberspace Science, Harbin Institute of
Technology, Harbin 150000, China (e-mail: weizhe.zhang@pcl.ac.cn).

Digital Object Identifier 10.1109/TNET.2023.3330381

these pipeline stages. This hardware-software mapping enables
bounded worst-case rule searching. Additionally, incremental rule
update is achieved simply by traversing the pipeline in one pass,
with little and bounded impact on rule searching. Experimental
results show that our design achieves an average classification
throughput of 600.8/147.5 MPPS and an update throughput of
8.2/5.9 MUPS for 10k/100k-scale 5-tuple and OpenFlow rule sets.

Index Terms— SDN, SmartNIC, packet classification, FPGA.

I. INTRODUCTION

ITH the development of network function virtualization

(NFV) and the rise of software-defined networking
(SDN) technology, the virtual functions of the network proto-
col stack in data center can be updated frequently. As features
added and network speeds increased, these network stacks
become increasingly complex, and running them on CPU cores
takes away much processing power from Virtual Machines
(VMs), increasing the cost of running cloud services. With
the increasing demand for line-speed of 100GbE in data
center, packets have to be handled at a maximum throughput
of 148.8 MPPS (where the packets are 64-byte minimum
size), making it looks bleak to conduct packet processing on
CPU cores. In this context, SmartNICs are gaining popularity
due to the high performance and programmability to offload
fungible SDN data plane functions [2]. Among these offloaded
functions, multi-field packet classification is an essential com-
ponent, which provides a way to discriminate packets into
different “flows” and enables differentiated functionalities,
so that all packets belonging to the same flow would be
processed in a similar manner by the SmartNIC.

As a widely studied bottleneck, packet classification has
attracted extensive research attention [3], [4], [5]. Despite more
than twenty years of research efforts, packet classification at
line-speed remains to be a challenging problem [6]. Worse
still, backed by SDN, the popular OpenFlow puts forward
higher requirements for packet classification [7], such as
more classification dimensions and faster rule update speed.
Thus, hardware using Ternary Content Addressable Memory
(TCAM) is still the dominant implementation of packet clas-
sification in high-end OpenFlow switches. However, TCAM
is very area-inefficient, expensive and power-hungry, which
seriously limit its scalability in SmartNIC [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17]. Meanwhile, with the explosion
of network traffic in data center, the number of rules in

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6495-081X
https://orcid.org/0000-0001-9234-0763
https://orcid.org/0000-0001-6985-263X
https://orcid.org/0000-0003-1743-7623
https://orcid.org/0000-0002-0958-8547
https://orcid.org/0000-0002-8588-8744
https://orcid.org/0000-0002-9409-5359
https://orcid.org/0000-0003-4783-876X

1708

classifier increases rapidly, making this classical problem more
challenging than ever.

Under this circumstance, Field Programmable Gate Array
(FPGA) has been regarded as promising hardware to realize
line-speed packet processing in SmartNIC, due to its flexible
programmability, high performance and rich capacity [18].
However, none of previous works satisfy the demands of
high speed classification and frequent rule update brought by
OpenFlow for large-scale rule sets. Specifically, the bit-vector
(BV) decomposition consumes a huge amount of distributed
RAMs, which restricts the scale of applied vectors [18], [19],
[20], [21]. So only small-scale rule sets can be supported
by BV decomposition architecture, although rule update is
well supported. On the other hand, although decision tree
based approaches do not have the restriction of rule set
scale, they could hardly support dynamic rule update (i.e.,
without pre-computing the memory content or rebuilding the
tree/subtree) due to the notorious rule replication problem,
which makes it very difficult to ensure atomicity and consis-
tency in the update process, or the overly scattered storage
in fully pipelined architectures [22], [23], [24], [25], [26],
[27], [28]. Moreover, most of the existing FPGA designs
are based on the off-the-shelf algorithms, and the algorithms
themselves were not specifically customized according to
FPGA characteristics, so the potential of FPGA cannot be
brought into full play. Thus, algorithm/hardware co-design
schemes are more desired.

In response to the above problems, we propose an
algorithm/hardware co-design scheme for parallel and updat-
able packet classification on FPGA. As an algorithmic solution
designed for FPGA from scratch, the proposed software
algorithm (i.e., KickTree) fully takes into consideration of
the FPGA hardware characteristics, and takes advantage of
parallel computing. The proposed hardware architecture (i.e.,
KickTree_Systolic) adopts a flexible design, which eliminates
the need for multi-tree result parsing, and can promptly
adapt to various rule sets. The main contributions are as
follows:

o Unlike traditional multi-tree building scheme based on
static and empirical rule subset partition, KickTree builds
multiple trees in a dynamic and recursive manner, which
breaks the space constraints of rule-to-tree mapping, and
makes it more scalable for OpenFlow rules with arbitrary
number of fields.

o Each decision tree completely avoids rule replications
by recursively kicking duplicated rules to the remaining
subset during the tree construction process, which makes
it inherently supportable for incremental rule update. The
maximum tree depth and the number of rules contained
in each leaf node are both strictly limited, which balances
the search time of each tree in hardware and reduces the
bottleneck effect, thus providing the potential of bounded
worst-case and line-speed performance.

o A hardware architecture with multiple parallel systolic
arrays is designed, without the need of parallel result
resolving for multiple trees. Each systolic array works as
a coarse-grained pipeline, and the constructed multiple
trees will be flexibly mapped onto these pipeline stages.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

TABLE I
EXAMPLE RULE SET WITH FOUR IPv4 HEADER FIELDS
rule id | priority src_addr dst_addr src_port dst_port action
Ry 13 228.128.0.0/9 124.0.0.0/7 119:119 0:65535 actionl
Ry 12 223.0.0.0/9 38.0.0.0/7 20:20 1024:65535 | action2
R3 11 175.0.0.0/8 0.0.0.0/1 53:53 0:65535 action3
R4 10 128.0.0.0/1 37.0.0.0/8 53:53 1024:65535 | action4
Rs 9 0.0.0.0/2 225.0.0.0/8 123:123 0:65535 action5
Rg 8 107.0.0.0/8 128.0.0.0/1 59:59 0:65535 action6
Ry 7 0.0.0.0/1 255.0.0.0/8 25:25 0:65535 action7
Rg 6 106.0.0.0/7 0.0.0.0/0 0:65535 53:53 action8
Ro 5 160.0.0.0/3 252.0.0.0/6 0:65535 0:65535 action9
Rio 4 0.0.0.0/0 254.0.0.0/7 0:65535 124:124 actionl0
R11 3 128.0.0.0/2 236.0.0.0/7 0:65535 0:65535 actionl]
Rio 2 0.0.0.0/1 224.0.0.0/3 0:65535 23:23 actionl2
Ri3 1 128.0.0.0/1 128.0.0.0/1 0:65535 0:65535 actionl3

Furthermore, incremental rule update is achieved by
traversing the pipeline in one pass, with little and bounded
impact on rule searching.

¢ An auxiliary linear search Processing Element (PE) with
limited rule capacity is added in hardware to improve
the update success rate, so that the hardware can avoid
recompiling after rule update failures in all tree-based
PEs for an extended period of time, and the overall
architecture remains worst-case bounded.

With extensive experiments, we show that, even for
rule sets up to 100k entries, KickTree can still construct
shallow decision trees with a limited number of sub-
sets. The FPGA implementation result shows that it can
achieve high performance in both packet classification and
real-time rule update for 5-tuple and OpenFlow rule sets.
Specifically, the average classification throughput and update
throughput for 10k-scale rule sets has reached 600.8 MPPS
(Million Packets Per Second) and 8.2 MUPS (Million
Updates Per Second), respectively. Even for large-scale 100k
rule sets, it can reach an average classification through-
put of 147.5 MPPS and an average update throughput of
5.9 MUPS.

The rest of the paper is organized as follows. Section II
summarizes background and related work briefly. Section III
presents the algorithmic details of our proposed KickTree.
Section IV illustrates the hardware architecture. Section V
shows experimental results. Finally, Section VI draws the
conclusion.

II. BACKGROUND AND RELATED WORK
A. The Packet Classification Problem

Packet classification is classifying network traffic in fine
granularity according to multi-field packet header information
and a pre-established classifier which consists of a set of
rules. Each rule r has d components each represented by
r;. r; is a regular expression on the ith field of the packet
header, which could be a prefix, range or exact value. A packet
p = (p1,p2,-..,pq) is said to match rule r if Vi,p; € r;.
Table I shows an example rule set with four IPv4 header fields.
Priority indicates the degree of importance, meaning that if a
packet conforms to more than one rule, the low priority rules
would give way to a high priority rule. Packet classification has
been extensively researched in last two decades with numerous

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

XIN et al.: RECURSIVE MULTI-TREE CONSTRUCTION WITH EFFICIENT RULE SIFTING

algorithmic approaches proposed, such as decision tree [28],
(291, [301, [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41], decomposition [42], [43], [44], [45], [46], [47],
[48], [49], and Tuple Space Search (TSS) [50], [51], [52], [53],
[54], [55], [56], [57], [58], [59], [60], [61]. Since the current
FPGA-based packet classification solution is mainly based on
decision trees and decomposition algorithms, in the following
two subsections, we will focus on these two approaches to
review the related work on FPGA.

B. FPGA Solutions Based on Decision Trees

The decision tree based architectures can achieve high clas-
sification performance by taking advantage of the full pipeline.
Qi et al. [22] presented an FPGA-based architecture target-
ing 100 Gbps packet classification based on HyperSplit [33],
which is an efficient pipeline architecture. A node merging
algorithm to reduce the number of pipeline stages is also
proposed, together with a leaf-pushing algorithm to balance
memory allocation. This design can achieve a throughput
of 118 Gbps, and more than 50k rules of 5-tuple can be
supported with a Virtex-6 FPGA chip.

Chang and Wang [62] proposed a cutting tree scheme called
CubeCuts to build a binary decision tree by selecting a subcube
and dividing the search space into one inside the subcube and
the other outside the subcube. By using the hybrid scheme
that combines the CubeCuts and a constrained version of
classical HiCuts [29] to allow a small amount of replicated
rules, a balance between the required memory usage and the
height of the decision tree can be achieved.

The well-known HyperCuts [31] is optimized in several
ways by Jiang and Prasanna [26] to reduce the memory
requirement and minimize rule duplication. The rule set is
partitioned into multiple subsets that are built into multiple
optimized decision trees. The trees are mapped into a 2-D
multi-pipeline architecture with linear pipelines. This design
can store 10k 5-tuple rules in a single Xilinx Virtex-5 FPGA,
and sustain 80 Gbps throughput. Another hardware accelerator
based on a modified version of HyperCuts is presented by
Kennedy and Wang [63], in which a new pre-cutting process
is used to reduce the amount of memory needed for large rule
sets.

Chang et al. [64] implemented a pipelined architecture using
a new recursive endpoint-cutting (REC) decision tree. Consid-
ering that the bucket memory requirement becomes a serious
problem for the pipeline architecture, a bucket compression
scheme to reduce rule duplication in memory bucket pipeline
is proposed. The experimental results based on Xilinx Virtex-
5/6 FPGA show that much less BRAM is needed by REC than
other FPGA-based approaches.

In [65], Tan et al. proposed a hardware solution with
multi-pipeline architecture based on the MBitTree [66]
algorithm, which can achieve high throughput and support
large-scale rule sets. Special logics are designed to traverse
the decision tree quickly. Furthermore, they proposed several
pipeline optimization techniques to improve the architecture
performance. Experimental results show that the architecture
can accommodate 100k rule sets on a single NetFPGA_SUME

1709

chip, and achieve beyond 250 Gbps throughput on 10k rule
sets.

Although the above work could have efficient memory usage
and achieve high throughput, the rule duplication problem
remains. Concerns of dynamic rule update in hardware, such
as how to overcome the effects of rule duplication, how to
update leaf or ancestor nodes backwards, or even how to
dynamically create new nodes in a fully pipelined architec-
ture, are not addressed. Especially for some optimized and
balanced memory algorithms, the real-time update becomes
more complicated.

TcbTree [67] introduces TSS [50] to assist tree construction
to avoid rule duplication and supports dynamic rule updates.
However, it still encounters several problems: i) The parti-
tioning of rule subsets heavily relies on empirical small fields
characteristics of rules, which seriously limits its scalability
for OpenFlow rules with an arbitrary number of fields; ii) The
distribution of each rule subset is uneven, which makes the
depth of each decision tree very different, and there are a
large number of rules in the leaf nodes that are difficult to be
further split, resulting in a bulky decision tree; iii) The TSS
structure based on hash tables is the bottleneck of the overall
performance as it is not efficient in rule search. Therefore,
TcbTree has low performance on large-scale rule sets.

Xin et al. [68] proposed a parallel and updatable architecture
for decision trees with large-scale rule sets. A multi-level
result resolver is constructed for the convergence of multiple
trees. However, the complexity of parsing multi-input results
is high and takes up more resources, which affects the per-
formance of small-scale rule sets. Furthermore, implementing
this architecture is inflexible as it requires changing the result
parsing architecture to accommodate rule sets with different
numbers of trees. More seriously, all ongoing searches need
to be terminated when updating rules, which is not conducive
to dynamic update scenarios.

C. FPGA Solutions Based on BV Decomposition

The BV decomposition is another type of method widely
explored for hardware acceleration [43].

Qu and Prasanna [20] presented a 2-D pipelined architecture
for packet classification on FPGA based on the Field-Split BV
(FSBV) approach, which can achieve high throughput while
supporting dynamic rule update. In this architecture, modular
self-reconfigurable Processing Elements (PEs) are arranged
and each PE accesses its designated memory locally. A couple
of optimization techniques are exploited to make tradeoffs
between various design parameters and performance metrics.
A Virtex-6 FPGA can sustain a throughput of 650 MPPS for
classification with 1 million updates/second for a 1k 15-tuple
rule set. However, this approach only supports prefix and exact
match, and does not support range match.

Aiming to process range fields, Chang and Hsueh [28] pro-
posed two schemes. The first one is similar to StrideBV [19],
which is named the range bit vector encoding (RBVE) scheme
using specially designed codes to store the pre-computed
results in memory. The second scheme uses a simple subrange
match in a sequential fashion called sequential subrange

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

1710

compare (SSC) scheme. By performing experiments on a
Virtex-6 FPGA, the proposed designs can handle more than
5k OpenFlow rules and achieve the throughput of 566 MPPS.

In the BV-based algorithms, stringent memory resources
in FPGA are wasted to store relatively useless wildcards
since there are a lot of wildcards in the rules. To address
this issue, Shi et al. [69] presented a memory compression
scheme MsBV and constructed a memory-shared homoge-
neous pipeline architecture MsTP. They utilized a bit matrix
and proposed a rearrange technology for MsTP to determine
the potential of minimizing memory consumption. The exper-
imental results show that, compared to StrideBV [19] for ACL
and OpenFlow rule sets, MsBV has a significant resource
reduction in terms of memory, ALUTs and Registers.

According to the issue that the update latency of BV-based
approaches is proportional to the number of rules, which
can hardly support the SDN switch effectively, Li et al. [21]
presented an FPGA solution called SplitBV for efficient rule
update by using several distinguishable exact-bits to split the
rule set into rule subsets that can be searched in parallel.
Experimental results show that SplitBV can reduce the rule
update latency by an average of 37% and 41% compared
with [20] on two typical rule sets separately.

D. Summary of Prior Art

Clearly, FPGA-based packet classification has been actively
investigated for more than ten years. But as far as we
know, none of them can achieve high performance on both
lookups and updates for large-scale rule sets. Furthermore,
almost all the existing FPGA designs are based on previously
proposed algorithms, and the algorithms themselves are not
fully customized according to FPGA hardware characteristics.
The characteristics of hardware are different from those of
software, so the migration and mapping process from software
to hardware will sacrifice some intrinsic advantages, and the
advantages of FPGA cannot be brought fully into play.

To address these issues, we propose an algorithm that can
take advantage of hardware, and design a flexible hardware
architecture for this algorithm, which is suitable for fast
adaptation to various rule sets and supports rule updates
with little impact on the search process, achieving a good
algorithm and hardware co-design. Next, we will introduce
the details from aspects of algorithmic design and hardware
design respectively.

III. HARDWARE-FRIENDLY ALGORITHM DESIGN

Based on the above description, we can conclude that
the desired demands of FPGA design for decision trees can
be refined as follows: i) multiple independent trees taking
advantage of the multi-concurrency feature of hardware; ii)
shallow trees with bounded depth and limited number of
rules in each leaf node; iii) maximum balance among trees to
reduce performance bottlenecks. Besides, in order to support
dynamic rule update, building trees without rule replications is
also desired. Based on this conclusion, we give decision tree
algorithm design (i.e., KickTree) in this section.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

In Packet

s |
| KickTree classifier |
| |
: 1 Tree 2" Tree :
: - - I Rule
Packet |)
CICICI SIS Action on
|
|
|
|
|

Fig. 1. The algorithmic framework of KickTree.

A. Ideas & Framework

Previous tree algorithms generally have uncontrollable tree
depth, or the number of rules in leaf nodes is not fixed. The
depth determines the time latency of node search, while the
latter determines the latency of linear search in nodes. These
two variables interact and influence each other. Limiting the
maximum tree depth will increase the number of terminal node
rules, and conversely, limiting the number of terminal node
rules will expand the levels of intermediate nodes. However,
from the perspective of hardware design, many decision trees
with a fixed depth and a small number of rules in leaf nodes
are more preferred than a small number of deep and bulky
trees. Because the hardware can support concurrent operations
of multiple trees, the tree with the worst performance will
become the bottleneck of the overall algorithm.

Based on this observation, KickTree adopts a balanced
concept to build decision trees instead of empirical and static
partitioning of rules subsets. In this approach, we break the
restriction of pre-partitioning rule subsets, gather all possible
header fields together as a bit-selection pool, and dynamically
extract valid bits (not wildcards) each time to build a decision
tree in a recursive manner. Before building the tree, the
maximum depth and the threshold for the number of rules
in each leaf node (i.e., binth) are specified to make worst-case
bounded. In the process of tree building, the local optimal
principle is used to select bits sequentially, and the rules that
do not meet the bit-selecting conditions (i.e., the value of the
rule in the selection position is a wildcard) or exceed the leaf
node rule threshold are removed from the current tree. After
the tree is built, if there are remaining rules, we continue
to build the decision tree in the same way and retain the
rules of being kicked out for constructing the next level of
tree. This process continues recursively until there are no
rules left. The algorithmic framework of KickTree is shown in
Fig. 1. Based on the framework, we next give more algorithm
details on each tree construction and multi-tree construction
in subsection III-B and subsection III-C respectively.

B. Bit-Selecting Tree With Efficient Rule Sifting

As each non-wildcard bit can map rules into at most two
subsets without any rule replications, each tree is built by
selecting non-wildcard bits with the best effort. We focus on
two targets, the first is a shallow tree with small tree depth
and binth, the second is efficient rule sifting to produce a small
number of trees with fast convergence.

In order to achieve the first goal, we strictly limit the
maximum tree depth and the value of binth for each leaf node.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

XIN et al.: RECURSIVE MULTI-TREE CONSTRUCTION WITH EFFICIENT RULE SIFTING

Complete Remaining Remaining
rule set rule set r’ rule set
| |
Bit-Selecting Rule Bit-Selecting ~ Rule Bit-Selecting
Kicking Kicking
1% Tree 2" Tree
CRooD CRooD
No
(fo09) Qos9 (oag (foc) o09) (oeg) Gec) @9 @3 |rules
left
(toc) oo e (o) (B G e
Ceah G e

Fig. 2. The construction process of KickTree.

Besides, choosing more bits for each node to be divided can
increase the number of forks and reduce the depth of the tree.
However, too many bits will increase the logic and storage
resources of the hardware and cause performance degradation.
Therefore, the choice of the number of bits is a matter of trade-
off. To control the width of the tree, we assume that at most
C bits are allowed to be selected in each tree node.

In order to build a shallow and balanced decision tree
and make the recursive building process of the decision trees
converge quickly, in the construction process of each tree,
the heuristic local optimal strategy bit-selecting algorithm is
utilized to select th e most distinguishing non-wildcard bits.

Local Optimal Strategy: When splitting the rules of a node
into child nodes, the method first enumerates all possible com-
binations (strategies) of fields where bit selection is available.
Under each strategy, the first unselected bit in the selected filed
is chosen for splitting rules, then it traverses the generated
child nodes, counts the sum of the number of rules within the
node and the number of rules kicked under the current strategy,
and selects the maximum value denoted as MaxNum[j].
Equation 1 represents the above steps, where #Child[j][i]
and #RuleKick(j] are the number of rules in sth child node
and the number of “kicked” (described in subsection III-C)
rules for strategy j respectively, where i = 1,2,...,2¢ (C
is the bit count for rule set splitting at each tree node), and
j=1,2,...,d° (d is the number of fields where bit selection
is available). Next, all strategies are traversed, and the strategy
with the minimum MaxNum is selected as the local optimal
one as shown in Equation 2.

MazNumlj] = arg max(#Child[j][i] + # RuleK'ick[j])

ey
Strategy = arg min(Max Num/[j]) ()
J

C. Multiple Bounded Trees Without Rule Replications

The construction process of KickTree is shown in Fig. 2
and Algorithm 1. The function SelectBits(R,U B) selects bits
for each node splitting with the aforementioned local optimal
strategy, and U B records the selected bits for current tree
building. The classifier construction starts from building the
first tree with the complete rule set as the root node, by using
the above described single tree algorithm.

In one of the following situations, the method stops the bit
selection process: 1) The tree depth reaches the predefined

1711

maximum value; 2) The number of rules in the tree node
is less than the predefined threshold binth; 3) The remaining
unselected rule bits share the same value and cannot further
separate the rules from each other.

A rule would be “kicked” out of current tree in one of
the following two cases: 1) At least one of the values of the
selected bits in this rule is a wildcard, which means that this
rule will be duplicated in each child if it is not kicked out;
2) This rule cannot be accommodated by a leaf node because
of the binth space limit.

This recursive manner might result in multiple decision
trees with evenly distributed depth and number of leaf node
rules. These trees could be implemented on FPGA and run
independently and simultaneously to perform packet classi-
fication. By minimizing the search delay among different
decision trees, this balanced feature can improve the overall
classification result generation speed, thereby preventing the
so-called bottleneck effect.

D. A Working Example

This subsection illustrates a KickTree classifier construction
example for the 13 rules given in Table I. Assume that the
maximum tree depth is two, each internal tree node is allowed
to select a maximum of two bits for rule mapping and the binth
of the leaf node is one. Each port range R,; can be simply
transformed to its Longest Common Prefix LCP,;, which is
the lowest common ancestor of integer a and integer b in a
binary prefix tree [70]. For example, for the 8-bit width range
Rap = [97, 127] = [01100001, 01111111], its longest common
prefix LCP,, = 011#%*%* Thus, each rule in Table I can be
converted into a 96-bit width ternary (i.e., 0, 1, *) string as
shown in Table II.

The process starts from building the first tree with the
complete rule set. Based on the bit-selecting strategy described
in subsection III-B, the selected bits for dividing root node are
in 1st and 33rd, which would remove Rg and R as their 33rd
bit or Ist bit is a wildcard. This bit-selecting generates three
valid mapping nodes. The first valid node { R5, Rg, R7, R12}
then chooses 74th and 75th bits in the same way, and generates
three leaf nodes where R is removed since its corresponding
bits are wildcards. The selecting bits for the second valid node
{R1, Ro, R3, Ry} are the same which generate three valid
nodes including two leaf nodes. The intermediate node {Rs,
R4} reaches the maximum tree depth and the number of rules
exceeds binth, so the higher priority rule R3 remains as a leaf
node. With the rules removed from the first tree as the root
node, the second tree is built and the rule Ry is removed
to build the third tree. Then no rules are left and the process
of classifier construction is done. The constructed KickTree
classifier is illustrated in Fig. 3.

E. Packet Classification & Rule Update

1) Classification: The classification mechanism for Kick-
Tree could be similar to that of other multiple decision tree
approaches, that is, incoming packets are searched in all trees
and the results are collected to choose the rule with the highest
priority. However, in our FPGA implementation, the packet

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

1712

15 tree

R1,R2,R3,R4,R5,Re,R7,

Selected Bits: R81R91R1D;R111R121R13

1st & 33rd

74th & 75th oo™ o1 10 ~11 74th & 75th oo~ 01

10 ™11
Leaf 1] [Leaf 2 E Leaf 3| [Leaf4]| E Leaf 6
R || Re Rs Re |[Leaf5R, Ri

R5,R5,R7,R12 R1,R2,R3,R4

36th o

1

Leaf 7| |Leaf8
R11 R9

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Fig. 3. A working example of KickTree.

searching procedure is in a cascaded manner. Each packet
passes through the trees in turn and the matching rule with
the highest priority is eventually selected.

2) Update: For rule deletion, the process is relatively
simple. Trees are traversed by starting the search from the
first one. Thanks to the fact that rule replication does not
exist in KickTree, once the tree where the rule is located
is found, the rule would be deleted from this tree and the
remaining trees do not need to be searched further. The
above is the same implementation method of software and
hardware for deletion, while the insertion process is more
complicated.

For rule insertion, search also starts from the first tree.
To make the framework extensible to the amount of inserted
rules, the algorithm supports dynamically reconstructing trees
which is similar to the process of KickTree construction, and
this is how our software is implemented. However, dynamic
tree reconstruction is inefficient for hardware implementation,
so a recursive method is adopted for our systolic array architec-
ture. If the number of rules of the leaf node to be inserted has
already reached binth, or the current selecting bit is a wildcard,
then the next tree is entered to search until a suitable tree is
found to insert. To handle the case of failure to insert rules in
all trees, we design an update guarantee mechanism which is
introduced in Section I'V-F.

IV. HARDWARE ARCHITECTURE DESIGN

Based on the proposed KickTree algorithm, we give a
flexible hardware architecture design (i.e., KickTree_Systolic)
in this section, which can be agilely adapted to various rule
sets, get rid of the need for multi-tree result parsing, and
support rule updates that have little impact on search.

A. Top-Level Architecture

The basic hardware architecture for a complete KickTree
structure is in the manner of 1-D systolic array in which
Processing Elements (PEs) are cascaded in one dimension.
Each systolic PE is corresponding to a tree and receives inputs
of a command of search/update and a result from the previous
PE. An input command consists of a packet/rule along with an
operation code of SEARCH (for packet), or DELETE/INSERT
(for rule), while a result consists of a matched rule ID
and a result code of RULE_FOUND, RULE _NOT_ FOUND,
UPDATE_SUCCESS, UPDATE_FAILURE, etc. The PE con-
tinues to output the result and the corresponding command

nd rd
Kicked 27 tree Kicked 3 tree
Rules
R4,Rg,R10,R12,R13
Selected Bits:
0 1
1st
Leaf 1
Rs, R
91st o 1 33rd o 1
i FARNAW
Leaf 1 Leaf 2 Leaf 3| |Leaf4
R12 Rs R4 Ri3
Systolic Array 1
Command in |Command
Systolic | | Systolic | systolic | Systolic
Resitn ,| PE |,/ PE | ..., PE | | PE Resuty
Systolic Array 2
Command in Command
| Systolic [| Systolic [~ | Systolic [| Systolic
Resitn ,| PE |, PE | ..., PE | | PE [estitoy
Systolic Array M
Command in |Command
Systolic | | Systolic | systolic | Systolic
Resultin | PE N PE L~ PE L, PE Result oyt
1% Tree 2" Tree N" Tree Linear search
@ @ @ Rule 1
Rule 2
9o @ @9 @DED €9 B
(SIS &) @

Fig. 4. Top-level architecture design of the system.

after completing the search/update. When the last PE pro-
cessed the command, the final and optimal result would be
produced. All PEs work simultaneously in the form of cas-
cade, and only the adjacent PEs communicate by transferring
data, which constitute a coarse-grained pipeline. The internal
architecture of each PE is not purely pipelined, in order to
facilitate the update of rules.

Compared with the fully concurrent architecture with all
PEs processing the same set of packets in parallel, the most
significant advantages of the systolic array design lie in:
i) Since the resolution of rule priorities is done sequentially
during PE pipeline processing, there is no requirement of
complex out-of-order result aggregation and synchronization
for multiple trees in hardware; ii) It facilitates the gradual
rule updates of multiple trees, rather than parallel update,
as updating simultaneously within all trees may result in
duplicated rule insertions, and it is hard to locate the most
appropriate tree to insert a rule. Moreover, an FPGA chip can
accommodate multiple systolic arrays as long as the resource
is sufficient, each of which can process packets individually.
Fig. 4 shows the top-level block diagram of proposed FPGA
architecture. M is the number of systolic arrays implemented
on an FPGA. This value is almost proportional to the classi-
fication throughput because each array works independently,
and more arrays mean that more packets can be processed
simultaneously.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

XIN et al.: RECURSIVE MULTI-TREE CONSTRUCTION WITH EFFICIENT RULE SIFTING

Tree intermediate node table entry

1713

Node table
_ is leaf| node] ;] child[0] | __ |child[1]| child[7] memo
@ i —b{ =0 | valid] NA | depth | nrules |field[0] |field[1] fleld[Z]]mask[O] mask[1]|mask[2] il] il il | rootry
: 1bit 1bit 32bit 4bit 16bit 4bit 4bit 4bit 32bit 32bit 32bit 16bit 16bit 16bit)]
>
@ @ @ @ | Tree leaf node table entry :
J
is leaf| node [1% rule |
g valid] o depth | nrules| NA] NA [NA [NA l NA l NA] NA] \ NA NA
J 1bit 1bit 32bit 4bit 16bit 4bit 4bit 4bit 32bit 32bit 32bit 16bit 16bit 16bit

Rule table memory Rye table entry

| _)l next| next id range[4] | range[4] | range[3] | range[3] | range[2] | range[2] | range[1] | range[1]| range[0] | range[0]
valid | addr high low high low high low high low high low
1bit 32bit 32bit 8bit 8bit 16bit 16bit 16bit 16bit 32bit 32bit 32bit 32bit
protocol dest port src port dest IP addr src IP addr

Fig. 5. The data structure of search tree.

B. Search Tree Data Structure

As shown in Fig. 5, each search tree structure is represented
by a set of chain-table-like data structures. The intermediate
node (including root node) and leaf node are separately
denoted by two types of node table, and the collection of
all node tables of a tree is stored in a single node table
memory. Each leaf node is associated with the rule table
memory caching rule tables describing all rules that belong
to this leaf node.

1) Node Table Entry: The node tables in Fig. 5 show the
case of the selectable bit number being 3 as each node has
a maximum of 8 child nodes. The first bit is_leaf indicates
the current node is an intermediate node or leaf node. The
second bit node_valid indicates if the current node is valid,
which could be modified during an update. This bit being
0 means there is no rule associated with this node. The
following bits depth and nrules represent the node level depth
and the number of related rules for the current node. The
above bit fields are common to both types of node tables,
as the remaining fields are distinct for these node tables. In the
intermediate node table, the bits field[i] (i = 1,2,3) are
utilized to select the cutting rule fields (or dimensions). Bit
selection is accomplished by mask[i] (i = 1,2,3) in which
only 1 bit is 1, which can avoid multi-level multiplexers to
select bits in rule prefix. When the 3 bits are determined and
spliced together, the next-level child node address indicated by
child_addr would be determined consequently. In the leaf node
table, only 1°¢_rule_addr is referred to locate the rule table
memory address of the first rule within the leaf rule subset.

2) Rule Table Entry: Each rule in tree leaf nodes is rep-
resented by a rule table entry. This paper only shows the
case of a 5-tuple format, and this table is scalable to other
formats of rules. The rule table entries in the rule subset
associated with each leaf node are stored consecutively, and
the bit next_valid indicates whether the next rule is valid. Rule
mask is transferred to ranges with two endpoints in advance
and recorded in this table. The rule table can be implemented
with Ultra RAM, Block RAM, or Distributed RAM, depending
on the scale of the rules to be stored in PE.

C. Systolic PE Architecture

The right part of Fig. 6 shows the detailed design of systolic
PE. Since the search result in the current PE needs to be
compared with the previous PE result for a specific command,
the results and commands need to be aligned by the packet/rule

ID. However, the employment of multiple search units in
the search tree module brings about a challenge, as they are
free to accept packets or rules whenever they are idle and
process them at different speeds. In order to address this issue,
we set the alignment RAM of command and result. When
a result is produced by search tree module, the packet/rule
ID is extracted to act as the common access address of
alignment RAMs in which commands and previous results
are sequentially buffered. In this way, the newly produced
results after comparison are synchronized with the commands
in interface FIFOs.

D. Search Tree Module Architecture

The architecture for each tree structure is composed of
Node Searcher module and Rule Processor module, which
is illustrated in the left part of Fig. 6. The Node Searcher
traverses the tree nodes level by level from the root, finding
the leaf possibly containing matched rules and locating the
start address of the subset associated with this leaf. More
specifically, it starts from reading the root node table entry
from the first address of node table RAM. The field[i] (i =
1,2,3) and mask[i] (i = 1,2,3) in the entry would select
3 bits from the packet/rule to get h, and the next-level child
node address indicated by child_addr{h] would be determined
by the value of 3-bit h. Next, the next-level node entry is
obtained from the RAM, and the above process will continue
until a leaf node is found, or the next-level child node address
is invalid. The rule address and the cached node information
of last two levels are transferred to Rule Processor. The Rule
Processor searches rules linearly by looking up the rule table
RAM and makes actions of search, deletion, or insertion
according to the operation code (OP code).

Node Searcher processes rules and packets in the same way,
and the only difference is that the input of the rule is the lower
endpoint of a range, while Rule Processor handles packet and
rule to delete/insert by rule search and rule delete/insert mod-
ules respectively. To prevent the memory write/read collision
of multiple search units in Node Searcher, only the first search
unit processes rule update request with the other ones closed
until the current update is completed.

These two modules operate independently, forming a two-
stage coarse-grained pipeline. In the Node Searcher module
and Rule Search module of Rule Processor, the memory is
read sequentially. Since the tree-traversal process is sequential
rather than fully pipelined, the tree depth is proportional to the

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

1714

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Result l

Fig. 6. The architecture of systolic array.

search latency. A large tree depth will result in high search
latency. To address this issue, multiple units are implemented
to work simultaneously to speed up the search process, and
each unit can independently process a packet. Although these
units share a common bus and access the memory in different
time slots, increasing the number of units could significantly
improve memory utilization, because the memory access has
a latency and each unit only takes a limited time to query the
storage. However, excessive units will encounter the bottleneck
of memory access. In other words, when the number reaches
a certain value, the search performance will not be further
improved by continuing to increase units. Thus we configure
the number that can maximize memory access efficiency with
minimum resource usage in the actual implementation. The
arbitration between multiple search units in both modules is
ensured by Round Robin, as each unit has the same priority.

E. Dynamic Rule Update Mechanism

Our hardware architecture supports dynamic rule update
(deletion or insertion) without the need for pre-computation
of memory content. Inside the search tree architecture, the
Node Searcher would cache complete information of up
to two levels of traversed nodes. Therefore, upper-level
nodes can be traced back to modify related node table
content.

Moreover, in the update operation of the rule table, the rule
subset associated with each leaf node will always maintain the
order of priority from high to low. Initially, the rules are sorted
in order of priority from highest to lowest. When inserting a
rule, the priority of each rule will be checked sequentially
until a rule with a priority lower than or equal to the rule
to be inserted is found, and the rule to be inserted is placed
before this rule, by updating the next_addr field of the rule
table before the rule.

Because dynamic rule update involves the management of
storage space, two empty address distributors are designed
to interact with rule delete and insert units to recycle and
reallocate empty entries in real time for node table memory

Packet in
/Rule in
GGENEN Node Searcher T Command e | Command out
S~o . > —>
5 RN alignment RAM interface FIFO
Search unit STt packet/rule ID
= Command in: "~
Search unit [Node table RAM Lo Packt/rule
H OP: search, delete,inser] Search tree e Result
Search unit = -] SUSl compare
updated
rule
Found Uppgr Node table y priority
rule addr node info update interface #
Result in: /
Rule Processer Search/update success/fai packet/rule ID Result Result out
RR] Matched rule ID Result interface FIFO
" Node tabe empt; Node table avail i} —_——>
IRl S adcr disrbutor [edcr FIFO GCMUEA foundiupdated rule priority
Search unit Rule tabe empty Rule table avail PR -
addr distributor addr FIFO | - e
Search unit] S - I
;
H Rule Rule /" Command i Command [Command _ . Commal Command gut
zommanc 1, > (=ommags -ommang
Search unit delete | insert g Systolic Systolic Systolic
i i3
SR Result in PE Result PE Resul Result, PE | Resultouj
Rule table RAM (True Dual Port) S

and rule table memory, respectively. The associated FIFOs
record the addresses of the emptied content after deletion and
provide available addresses for insertion. In the situation when
arule is being added and the FIFO is empty, an unused address
in the memory will be automatically assigned. In order to
effectively cope with this situation, the memory corresponding
to the node table and the rule table needs to be allocated some
idle space in advance.

Next, some specific situations that may occur during the rule
update process are enumerated, followed by the corresponding
handling methods in our mechanism.

Insert in the middle of leaf rule subset: 1f the number of
rules is less than binth, the rule to insert is written in the
entry of the address assigned by rule table empty address
distributor, and the next_addr of the previous rule table is
updated to this newly allocated address. The nrules of the leaf
node table is incremented by 1. Otherwise, a result code of
INSET_FALTURE is released.

Delete in the middle of leaf rule subset: The address of
the deleted rule is recycled by the rule table empty address
distributor, while the content is invalid by default, and the
next_addr of the previous rule table is updated to next_addr
of the deleted rule table. The nrules of the leaf node’s table
entry is subtracted by 1.

The position to insert/delete the rule is the first in the leaf
node rule subset: After the rule table memory is updated, the
15 _rule_addr field of the upper-level node table needs to be
updated to indicate the address of the first rule after updating.

The last rule associated with a leaf node is deleted: Besides
recycling the rule table address, the node_valid bit in the node
table is set to 0, which indicates this leaf node is invalid
without rules. This bit could be certainly reset to 1 if rules
are inserted within this leaf.

Creation of a new leaf node: When a rule could be inserted
into a lower-level leaf node that the intermediate node does not
originally have, a new leaf node table and the associated rule
table are created accordingly at the newly assigned addresses
by node table empty address distributor and rule table empty
address distributor.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

XIN et al.: RECURSIVE MULTI-TREE CONSTRUCTION WITH EFFICIENT RULE SIFTING

Algorithm 1 Construction of KickTree

1 Parameters: Max tree depth L, leaf bin size B, bit
count C' for rule set splitting at each tree node
Input: Rule set R
Output: Decision Trees T'[n]

2 begin

3 Tree count ¢ =0
/+x UB[k] =1 if bit k was used for
rule set split */

4 Reset UB

5 while R # o do

6 R «— KickTree (T[i], R, UB, 1)

7 L 1—1+1

8 Function KickTree (T, R, UB, depth)

9 begin

10 | if |R| < Bthen /+ |R| is the size of
rule set R */

1 T.Rules — R

12 L return &

13 if depth = L then
14 T.Rules «— {r | r € R with top B priorities}
15 return R — T.Rules

/+ T.Split: bit positions for rule
set splitting x/
16 T.Split «— SelectBits (R, UB)

17 UBIb] < 1 Vb € T.Split

18 R, — {r|r € R with any wildcard split bit}

19 R~ R—- R,

/* T.Children: the child nodes of

the node currently being split in

the tree. */
20 foreach Child € T.Children do
21 R — {r|r e
R matching Child's split bit values}
22 R, «— R,U KickTree (Child, R, UB,
depth + 1)
23 UB[b] < 0 Vb € T.Split /+ Recover UB for
parent */
24 return R,

F. Update Guarantee Mechanism

As the rule update on the hardware is difficult to achieve
the dynamic tree reconstruction mechanism on the software,
the update failure case may happen: a rule cannot be inserted
into any trees. For the purpose of improving the overall rule
insertion success rate, the last PE of each systolic array is
set to linear search with relatively relaxed binth restrictions,
which can accommodate rules of insertion failure. This feature
is shown in Fig. 4. In practice, the situation that all previous
PE update failures rarely occur, especially when the number
of PEs is large. For example, 9 PEs guarantee a better update
success rate than 3 PEs.

1715

Nevertheless, note that when the rules for linear search in
the last PE accumulate to a certain extent over a long period,
it is necessary and recommended to reconstruct the classifier
as a whole and rewrite the memory in each systolic array,
to avoid this auxiliary update module from turning into the
throughput bottleneck of the system. Therefore, the overall
systolic architecture is still worst-case bounded.

G. Result Consistency Preservation

If this architecture were to perform rule updates at the
same time as classifying the packet, there could be a risk of
introducing inconsistencies in classification results. However,
if all PEs in the systolic array run only one type of task in order
to avoid inconsistency, the performance will be significantly
reduced. To cope with this situation, an isolation mechanism
for two tasks is designed in the search tree architecture inside
the PE. Update commands will not be accepted if there is
an outstanding classification process within a PE, and vice
versa. In this way, tasks of a different category in the array
can never catch up with the previous task to avoid mutual
interference between them, and the latency sacrificed for
isolation is reduced to the span of one PE, which has less
impact on overall performance.

V. FPGA IMPLEMENTATION RESULT
A. Experiment Setup

In hardware implementation, we only focus on the per-
formance of relatively large-scale rule sets. Three types of
5-tuple rule sets are generated by ClassBench [71] using
default parameters, which are ACL, FW and IPC, and the
size of each type of rule set includes 10k and 100k. For
each size, 12 rule sets based on 12 seed parameter files
(i.e, 5 ACL, 5 FW, and 2 IPC) are generated. The software
source code of KickTree can be downloaded from the website
(https://www.wenjunli.com/KickTree).

Furthermore, to verify the scalability of our architecture
for OpenFlow rules which contain more fields, ClasshBench-
ng [72] are utilized to generate OpenFlow-like rule sets of 10k
and 100k sizes, each with 2 seed parameter files. The source
code of the modified ClassBench-ng can also be downloaded
from the website mentioned above. The rule has 9 fields:
source IP address, destination IP address, source port, destina-
tion port, protocol, in port, source MAC address, destination
MAC address, and Ethernet type. We have supplemented the
trace-generation capability for ClasshBench-ng to generate
corresponding trace files. Accordingly, we extend the data
structure shown in Fig. 5 to support OpenFlow rules, and make
minor changes to the hardware logic.

We first evaluate the number of subsets of 5-tuple rules
for KickTree under two parameters with different values:
the maximum depth of the tree and binth, with the number
of selection bits fixed at 3. In subsequent evaluations for
FPGA implementation, the maximum tree depth, selection
bit number and binth are set to 8, 3, and 10, respectively.
We further reduce the number of trees by increasing the binth
and maximum depth settings of the trees generated later. This

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

1716 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024
TABLE II
TERNARY STRING FOR EXAMPLE RULE SET
rule src_addr (SA) dst_addr (DA) src_port (SP) LCP dest_port (DP) LCP
id 1-32th bits 33-64th bits 65-80th bits 81-96th bits
R1 111001001, kkkkkkkrkrrrrxrxrxrrxrrrrrn | OLI1110x*rkkkkhhhhhhhhhhkkkkkkkk | 000000000 LLTIOLILIL | %k ok sk ok ok ok ok ok ok ok ok & & & %
Ro 1101111104 kkkkkkkkrrrrrrrrrrrrrr | 001001l rrrrkkhhhhhhhhhhhhhhkkkkk | 00000000000L0L00 | * % % sk s s sk sk ok o o ok & & % %
R3 TO0101 11l ,rkhhhhhhhhhhhhhhhhhhhrn | Ohhhhhhhhrrrrrrrrrrrrxrxrxrrrrrrrrx | 000000000011 0L0TL | *x*kkkkkkkkkkkkx
Ry | Ixrkxhnxhnknhnkhhxhhxkhxkhrkkrkkxksk | 00100101 skxhkkkkkkxkkxkhxkhkxkkxkkx | 0000000000L1L0L0TL | # %k ok kkokkk ok kk ko x
Rs | O0%xskkoksknxnkhkkdkhrxskhkkrxnxxnhkk | 11100001 s skksnrnshkhkkkxxxkkkkrxxx | 00000000011110LT | wxskkokokkhknkkkkkkx
RG 0110101 1 kkkkkkkhkkkhhkkhhkhkkhkhkhkhk | | hkhkhhkhrrkhhkrhhrrhoorxrkhrxrsrhrrxscx | 000000000011 1011 | *,rkkkkkkhkhkkkkhx*
R7 Ok hkrxkkhkkkhkkkhkkkhrrkhrrkhrrror | 111111 T T xxskrrxkhrrskrrxrxscrrxrxschrxrxsxx | 000000000001 1001 | *,rxkkkhkkkhkhk®kk**x
RS 0110101 %% %%k, ok Kk &k ok K Kk % & %k Kk & & % * & & % * Kok kkkkkkk ok ok ok ok kokkkkkk ok ok ok ok kokkokkk kK * ok Kk ok ok ok ok ok ok ok ok ok ok ok ok 0000000000110101
Ro | 10Tk xkkkkkhkkhdknhkkhnkhkhhkhkhhnkn | TTTTT D hkkkokkkokkkkkk ok kkkkkkkokkk kx| kok & kok ok kkkok ok kok ki kok | Kk ok ok kok &k ok &k Kk k& ok
Rl() Kk kkkkkhkkkkkkkkkhhkkhkkhhhkkhrnrk | 111111 T kkhkhkkkhhkkhhkhhhkkhhkkkhkrk | kkkrxkkrxkxxxsxxxx | 0000000001111100
Ri1 | 10k sk xxhkkkkkhkkkxkkkkkxkkkkkxkhk | 11T0LL0*kkkkkkokkkkkkkkkkkkkkkkkk | kokokokkkkkokkkkkkok ok | KoKk k&% kK ok ok & %k K % & %
R12 Orrkrkrkrkhkhkhkhkhkhhhhhhhhhhhhkhkhkhkhkhkhkkkk | L]l hhhhhkhk kA A AR A AAARAAARKR KRR KK **K* | *xxxxxxxxxxxxxxx | 0000000000010111
Rig | LIk kkkkkkkkkkkkkkkkkkkkkkokkkkkk ok | Lokokkkkkok ok ok kkk ok ok ok k ok ok ok ok kk ok ok ok ok ok kkk ok | kokokok ok ok kok ok ok k ok kokok ok | ok ok ok ok ok ok ok ok ok ok & ok ok ok k&
TABLE III
HARDWARE CONFIGURATIONS FOR DIFFERENT RULE SETS
Tree Number of nodes/rules RAM depth (bit) RAM type
Rule set number Ist tree [2nd tree 3rd tree Ist tree 2nd tree 3rd tree Ist tree 2nd tree [3rd tree
node [rule [node | rule |node] rule |u_node I _node [rule | node] rule | node [rule [u_node [I_node | rule [node [rule [node [rule
acll_10k 6 2791 | 7506 | 642 | 1738 | 110 454 10 11 13 10 11 7 10 | Block | Ultra | Ultra | Block | Ultra | Block | Ultra
acl2_10k 9 2406 | 7270 | 530 | 1355 | 106 535 0 12 13 10 11 7 10 NA Ultra | Ultra | Ultra | Ultra | Ultra | Ultra
acl3_10k 9 2085 | 6057 | 379 882 187 | 1027 0 12 13 9 10 9 11 NA Ultra | Ultra | Ultra | Ultra | Ultra | Ultra
acl4_10k 9 1990 | 6145 | 412 | 1128 | 128 724 0 11 13 9 11 8 10 NA Ultra | Ultra | Ultra | Ultra | Ultra | Ultra
acl5_10k 5 1415 | 4070 | 211 615 39 126 0 11 13 9 10 6 7 NA Ultra | Ultra | Ultra | Ultra | Ultra | Ultra
ipcl_10k 9 1570 | 3869 | 765 | 1979 | 328 | 1461 0 11 13 10 11 9 11 NA Ultra | Ultra | Ultra | Ultra | Ultra | Ultra
ipc2_10k 3 1171 | 8886 | 529 | 1114 1 1 0 11 14 10 11 1 6 NA Ultra | Ultra | Ultra | Ultra | Dist | Block
fwl_10k 8 4681 | 6631 | 665 | 2454 21 78 0 13 13 10 12 5 7 NA Ultra | Ultra | Ultra | Ultra | Block | Ultra
fw2_10k 4 2341 | 8352 | 892 | 1270 3 13 0 12 14 10 11 2 5 NA Ultra | Ultra | Ultra | Ultra | Dist | Block
fw3_10k 8 1912 | 6372 | 681 | 2191 43 248 0 11 13 10 12 6 8 NA Ultra | Ultra | Ultra | Ultra | Block | Ultra
fw4_10k 9 3457 | 6635 | 546 | 1464 28 269 0 12 13 10 11 5 9 NA Ultra | Ultra | Ultra | Ultra | Block | Ultra
fw5_10k 9 3275 | 5463 | 689 | 2930 27 85 0 12 13 10 12 5 7 NA Ultra | Ultra | Ultra | Ultra | Block | Ultra
of1_10k 7 4023 | 9628 | 520 | 1116 | 104 259 0 12 14 10 11 7 9 NA Ultra | Ultra | Ultra | Ultra | Block | Block
of2_10k 6 4221 | 9709 48 144 9 32 8 12 14 6 8 4 6 Block | Ultra | Ultra | Block | Ultra | Block | Block
acll_100k 8 38934 | 86055 | 3185 | 9684 | 638 | 3264 13 15 17 12 14 10 12 | Block | Block | Ultra | Ultra | Ultra | Distr | Dist
acl2_100k 21 5259 | 15781 | 2943 | 9331 | 2169 | 12407 0 13 14 12 14 12 14 NA Ultra | Ultra | Ultra | Ultra | Ultra | Ultra
acl3_100k 8 35228 | 82351 | 6930 | 15561 | 198 | 1262 12 15 17 13 14 8 12 | Ultra Ultra | Ultra | Block | Block | Dist | Block
acl4_100k 9 35556 | 82970 | 3811 | 10776 | 581 | 3391 12 15 17 12 14 10 12 | Block | Block | Ultra | Block | Ultra | Dist | Ultra
acl5_100k 3 30654 | 92449 | 654 | 2306 1 1 0 15 17 10 12 1 7 NA Block | Ultra | Block | Block | Dist | Dist
ipcl_100k 6 37483 | 90553 | 4030 | 8480 | 43 160 13 15 17 12 14 6 8 Ultra | Block | Ultra | Block | Ultra | Dist | Dist
ipc2_100k 4 9363 | 81920 | 2482 | 11009 | 4680 | 7071 0 14 17 12 14 13 13 NA Ultra | Ultra | Dist | Block | Block | Ultra
fwl1_100k 11 37449 | 66448 | 6239 | 18121 | 824 | 3109 13 15 17 13 15 10 12 Ultra | Block | Ultra | Block | Ultra | Dist | Ultra
fw2_100k 5 18473 | 80808 | 7207 | 13059 | 492 | 2069 11 14 17 13 14 9 12 | Block | Block | Ultra | Ultra | Block | Dist | Block
fw3_100k 8 18725 | 63115 | 5195 | 15224 | 467 | 2317 12 14 16 13 15 9 12 | Block | Block | Ultra | Ultra | Ultra | Block | Block
fw4_100k 16 18925 | 57688 | 3411 | 7953 | 1179 | 3896 12 14 16 12 14 11 12 | Block | Ultra | Ultra | Block | Ultra | Block | Block
fw5_100k 11 37448 | 54157 | 9104 | 25692 | 471 | 2578 13 15 16 14 15 9 12 | Block | Ultra | Ultra | Block | Ultra | Block | Block
Generic 21 38934 | 92449 | 9104 | 25692 | 4680 | 12407 13 15 17 14 15 13 14 | Block | Ultra | Ultra | Block | Ultra | Block | Block
of1_100k 8 34146 | 77698 | 3706 | 7435 | 535 | 1384 11 15 17 12 13 10 11 Dist Block | Ultra | Ultra | Ultra | Dist | Ultra
of2_100k 7 35843 | 94183 | 422 | 1338 | 222 659 12 15 17 10 11 9 10 | Block | Block | Ultra | Block | Ultra | Dist | Block

adjustment is based on an observation: most of the rules are
concentrated in the first three trees.

In most cases, the first PE contains the majority of the rules
and therefore has the highest storage requirement. On the
other hand, the storage depth for FPGA is a power of 2.
For example, if 2" + 1 entries are needed, then a stor-
age depth of 2("*1) is required to be reserved, which is
wasteful for memory resources, especially for node tables
that are added infrequently. To deal with this situation,
we divide the node table RAM in the first PE into two parts:
upper_half and lower_half. Among them, upper_half stores
entries whose address is higher than 2", while the depth
of lower_half is 2". This partitioning approach for the first
PE can achieve the maximum benefit. In contrast, for the
other PEs, the benefit is not significant at the cost of higher
complexity.

The evaluation platform is Xilinx Virtex UltraScale+ VU9P
FPGA, which is equipped with a large amount of Ultra RAMs.
By taking advantage of this property, multiple systolic arrays
can be instantiated to explore a high performance for packet
classification. The number of search units in Node Search and
Rule Processor in each systolic PE is set to 5 and 6 separately.
The optimal number of search units is determined through trial
and error with extensive experiments.

In order to explore the characteristics of various rule sets
and achieve the optimal performance for a specific rule set,
hardware configurations for different sizes and types of rule
sets have been customized and finely tuned, which are listed in
Table III. It mainly shows the configurations for the first three
trees for two reasons. First, the first three trees contain the
vast majority of rules, so their configuration is representative.
Second, listing the configurations of all the trees would be

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

XIN et al.: RECURSIVE MULTI-TREE CONSTRUCTION WITH EFFICIENT RULE SIFTING

Subset

(a) ACL_100k

Fig. 7. Number of subsets for different rule sets.
TABLE IV
RESOURCE UTILIZATION FOR DIFFERENT RULE SETS
Rule set | ATy |CLB LUTs R:giLfers BRAM | URAM | LUTRAM frez/llli’;cy
num | (1182240) (2364480) (2160) | (960) | (591840) (M)
acll_10k | 20 71.87% 51.67% |72.64% |41.67% | 4.49% 201.25
acl2_10k | 15 79.29% 54.84% (96.74% [50.00% | 1.19% 225.28
acl3_10k | 14 77.08% 53.08% [63.75% |64.17% | 3.49% 203.21
acl4_10k | 15 80.99% 53.94% |77.29% [81.25%| 0.00% 222.32
acl5_10k | 25 73.87% 52.11% [53.73% [72.92% | 3.86% 250.50
ipcl_10k | 14 75.31% 50.55% [69.54% |81.67% | 0.00% 250.12
ipc2_10k [30 51.92% 37.64% [47.13% [62.50% | 2.02% 251.32
fwl_10k 15 72.46% 51.61% |64.14% |50.00% | 4.07% 250.06
fw2_10k | 30 69.81% 50.50% [56.16% |87.50% | 3.68% 250.44
fw3_10k 15 71.92% 51.11% [53.03% |50.00% | 4.86% 250.31
fw4_10k | 15 75.29% 50.62% |74.72% | 70.00% | 0.00% 250.56
fw5_10k 15 82.63% 57.76% [43.31% |75.00% | 4.07% 200.00
of1_10k 11 72.43% 41.31% |81.09% |40.10% | 0.26% 200.64
of2_10k 11 61.90% 35.65% |68.10% |34.38% | 0.74% 200.08
acll_100k | 6 42.86% 23.30% [85.00% [97.50% | 25.70% 179.23
acl2_100k | 6 79.19% 56.32% |87.78% [62.50% | 4.54% 201.13
acl3_100k | 5 29.40% 19.11% [83.22% | 85.42% | 8.25% 200.00
acl4_100k | 6 28.63% 23.11% |88.89% [97.50% | 16.13% 189.07
acl5_100k | 6 9.45% 7.56% |77.92% |80.00% | 2.09% 190.73
ipcl_100k| 6 38.38% 21.52% [86.39% [90.00% | 27.57% 176.09
ipc2_100k| 6 29.11% 15.73% |92.64% [90.00% | 22.74% 185.39
fwl_100k | 5 50.56% 27.18% [92.01% [89.58% | 30.43% 184.06
fw2_100k | 6 21.20% 14.41% |67.08% [90.00% | 5.66% 200.00
fw3_100k | 5 37.43% 25.00% |74.77% |87.50% | 7.18% 194.29
fw4_100k | 7 74.46% 50.93% |78.10% |70.00% | 12.78% 201.25
fw5_100k | 7 53.18% 35.28% [91.23% [93.33% | 11.97% 185.56
of1_100k 5 52.98% 27.31% |75.69% |93.75% | 24.67% 157.26
of2_100k 5 45.89% 23.30% [86.81% |88.54% | 20.09% 155.3

tedious and take up too much space. The RAM types include
Distributed (Dist for short), Block and Ultra. The u_node and
I_node denote upper_half node table RAM and lower_half
node table RAM respectively.

On the other hand, a generic configuration that can accom-
modate all 5-tuple benchmark rule sets is also implemented.
In the generic architecture, the maximum number of PEs is
required, with each PE having a storage capacity equal to the
maximum value of the corresponding PEs among all rule sets.
In this case, a systolic array consumes more resources, and
the number of arrays that can be accommodated by an FPGA
is lower than other configurations.

The use of three kinds of RAM in the architecture follows
two principles: 1) The Ultra RAM, Block RAM, and Dis-
tributed RAM are selected mainly depending on the scale of
the nodes or rules to be stored in each PE. Specifically, the
minimum depth of Ultra RAM, Block RAM, and Distributed
RAM on FPGA is 4096, 512, and 64, respectively. The node
table RAM or rule table RAM could adopt Ultra RAM when
the number of entries is large. It could adopt Block RAM

1717

d) OpenFlow_100k

Time (m
I
o
o
]

ion
o
o
o

1

Constructi
~
o
o
1

Fig. 8. The construction time for 10k and 100k rule sets.

when the entry number is moderate, or use Distributed RAM
when the number is small. 2) The resource usage of the three
kinds of RAM on the chip should be balanced. If one type
of RAM is consumed too much, some of it will be replaced
with other RAM, regardless of the actual depth requirements.
In summary, we first roughly allocate three kinds of memory
according to principle 1 and then fine-tune them according to
principle 2.

B. Number of Subsets

The number of subsets is the number of trees in KickTree,
which is determined by a set of parameters, such as maximum
tree depth and the threshold of the number of leaf node rules
binth. The number of bits selected per node is fixed at 3.
Fig. 7 shows the number of generated trees in KickTree under
different parameter combinations for 100k rules. Specifically,
the smaller the depth of the tree, and the smaller the binth,
the greater the number of trees. By controlling the above
two parameters, the actual number of trees can be maintained
at an acceptable level for FPGA implementation. Obviously,
KickTree can produce a relatively stable number of subsets
by adjusting the construction parameters for large size rule
sets, with the help of our heuristic optimal local strategy for
bit selection. More efficient strategies would be explored in
future work to further reduce the number of subsets. Moreover,
through the observation of the experimental results, it can be
found that most of the rules are concentrated in the first two or
three trees, and the number of subsequent trees can be reduced
by stepwise setting parameters, which is also the strategy we
adopt in the actual hardware implementation.

C. Construction Time

Fig. 8 shows the construction time of data structures for
various rule sets. All experiments are conducted on a PC

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

1718

Classification Throughput (MPPS)
I Update Throughput (MUPS) 112

411
~ 1400
o Awa
1200 4 49
< 2
= s
21000 - =
2 17 é’.
S 800 16 ©
= =]
= 15 2
S 600 [=
K 14 2
£ 400 1 3
[7] o
& 12 =
O 200
11
0

N A0b AR ADF ADE A0 AOF AOF AQF AQE A0 AOF AQF AQF
AQE AQF AGF ATE AQE AOF AQF AGF AT AT AOE AOF A0 O
JEATUE CRIE S RN PN S B S S R R

(a) 10k

Fig. 9. Classification and update throughput for 10k and 100k rule sets.

equipped with Intel Core i7 CPU@3.2GHz and 16G memory.
Even for 100k-scale rule sets, most of the reconstruction
processes can be completed within 1 second. Having a shorter
construction time holds a significant advantage when the
long-term incremental update causes the last PE to be too
large and the data structure needs to be restructured.

D. Resource Utilization

Table IV summarizes the number of generated systolic
arrays, resource usage and maximum frequency of hard-
ware implementations for various rule sets after synthesis,
placement and routing using Vivado 2021.2 design tool. The
OpenFlow rule sets begin with “of”. The “Array num” is the
maximum number of systolic arrays the FPGA can accom-
modate.In fact, the consumption of hardware resources by a
single systolic array corresponding to the rule set of 10k and
100k is very different, which leads to the difference in the
corresponding maximum number of arrays under the limitation
of hardware resources because we want to make full use
of FPGA resources. Therefore, the overall gap in resource
consumption between different rule sets is not large.

Since our hardware architecture supports real-time rule
update, sufficient spare storage space should be allocated for
the search tree in each PE at the beginning, in case there
are more insertions than deletions. Naturally, it can be noted
that the memory including Ultra RAM and Block RAM is
the most consumed FPGA resource. Thus an FPGA platform
equipped with Ultra RAM is more suitable for our dynamically
updatable architecture.

E. Performance Evaluation

In this subsection, we evaluate our FPGA implementation in
performance of throughput, which consists of packet classifica-
tion throughput and rule update throughput in units of MPPS
(Million Packets Per Second) and MUPS (Million Updates
Per Second) respectively. These two kinds of throughput are
calculated by simulation. We first generate the data structure
files of a specific rule set. Then we simulate our architecture
with these data structure files at the maximum frequency
obtained in Section V-D to perform classification/update with

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Classification Throughput (MPPS)
I Update Throughput (MUPS) q 10

200 - do

225 4

P
3
1

150

125

100 H

~
a
1

g
1
1
(4]
Update Throughput (MUPS)

Classification Throughput (MPPS

IN)
a
1
1

o
I

¢ 06 a0 o L a0F Lo L oOF 06 L qOF oOF La0¢ OF o0&
N AP '@Q,b '\QQD('\0"6 AP N AR (P N AP \Qg,b AP N \Q% '\@\ AT AP
o /ao\rl'/tao\ < oy P /_\QQ'L/,\« /“ﬂ«/@ et DR AT (g

(b) 100k

the packets/rules in the trace/rule file. The -classification
throughput is an average value by processing all synthetic
packet traces, while the update throughput is obtained by
running randomly generated operations including deletion,
insertion and modification for a long endurance (i.e., 100ms)
and calculating the average value.

The Fig. 9(a) and Fig. 9(b) show the classification through-
put and update throughput with respect to benchmark 10k
and 100k rule sets respectively. The performance varies
according to different rule sets. For 5-tuple rule sets, the
classification throughput is distributed between 347.5 MPPS
and 1513.2 MPPS in terms of 10k scale. The storage resource
requirement is relatively small, and the resource bottle-
neck lies in logic (i.e., LUTs). The result can be roughly
summarized as: the fewer trees are generated, the more
systolic arrays can be accommodated, and the better the
performance. On the other side, the range of classification
throughput for 100k-scale rules does not fluctuate much,
which is between 112.3 MPPS and 197.7 MPPS. In the
aspect of rule update performance, the throughput values
for various rule sets are similar, ranging from 5.3 MUPS
to 10 MUPS. For OpenFlow rule sets, the average throughput
of classification/update is 400 MPPS/6.8 MUPS for 10k size,
and 130 MPPS/4.6 MUPS for 100k size. Its performance does
not lag far behind that of 5-tuple because it does not generate
too many trees.

It is worth noting that the above classification and update
performance are measured separately without mixing, because
in different practical scenarios, the update frequency require-
ments are not fixed, depending on the actual business needs.
Moreover, interspersed updates between classifications are
well supported by the proposed architecture without the prob-
lem of inconsistency of classification results, thanks to the
isolation design of the two tasks in the PE architecture.
To illustrate this feature, we select two sizes of rule sets
(i.e., acll_10k, acl1_100k) to evaluate the classification per-
formance at different rule update rates, as shown in Fig. 10.
The update rate gradually decreased from one update per
10 packets to one update per 10000 packets. It can be
seen that after one update per 500 packets, the classification
performance is almost the same as that without an update.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

XIN et al.: RECURSIVE MULTI-TREE CONSTRUCTION WITH EFFICIENT RULE SIFTING

650 - I acl1_10k [acl1_100k] - 130

600
550
=4 110

500

450

L
©
=]
1

400

350

10k Classification Throughput (MPPS)
L
8

100k Classification Throughput (MPPS)

[

S

15}
I

10 20 50 100 500 1000 2000 5000
Packets per Update

10000

Fig. 10. Classification throughput at different update rates.

160 4 10k |7
[100k

6;140A q
o
o
S 1204 4
2
£100 4 4
(=2
3
£ 80+ i
[
S 60+ .
®
Qo
2
= 40 d
(%}
]
O 20 4

acll acl2 acl3 acl4 acl5 ipct ipc2 fwl fw2 fw3 fwd fwh

Fig. 11. The classification throughput for the generic hardware configuration.

In other words, for the 10k rule set, we can simultaneously
support about 600 MPPS classifications and 1.2 million rule
updates per second.

Fig. 11 visualize the classification throughput of various
rule sets under the generic configuration. Note that the overall
performance across all rule sets has experienced a decline,
particularly for the 10k-scale rule sets, dropping to a similar
magnitude as the 100k-scale rule sets. This compromise in
performance was made in order to achieve a solution that
offers greater flexibility and applicability.

The latency information used by the architecture to classify
each packet is also calculated to provide a more compre-
hensive analysis, including average, minimum, and maximum
latencies, which is depicted in Fig. 12. It is obvious that
our architecture does not have an advantage in terms of
latency compared with tens of nanosecond delays of TCAMs,
due to the serial multi-PE design. However, supporting a
flexible architecture entails certain trade-offs. Nonetheless, this
trade-off is sufficient to meet the microsecond requirements of
the NIC. We will focus on reducing latency as the next step
in our research.

FE. Comparison With Related Work

In this subsection, the FPGA implementation of the pro-
posed KickTree is compared with previous well-known works
based on decision trees and decomposition, which is sum-
marized in Table V. The throughput is the average of the
throughput corresponding to different types of rule sets in
Fig. 9(a). Since our approach relies on FPGAs equipped
with URAMs, it cannot be accommodated by the previously
adopted platforms such as Virtex-5 and Virtex-6. Furthermore,

1719

B Average
754 ® Minimum
7.0 A Maximum

6.0 A

Fig. 12. Classification latency for 10k and 100k rule sets.

many previous designs do not support large-scale rules and
some decision tree based implementations only adopt 10k
ACL as the benchmark, while the decomposition-based ones
only support small-scale rules. Therefore, in order to achieve
a unified comparison, we select three different types of 10k
rule sets on the VU9P FPGA for the following comparison.

In the comparison with FPGA designs based on decision
trees, our architecture achieves the highest throughput on
all types of rule sets except ACL. Compared with other
two updatable architectures, the proposed KickTree_ Systolic
outperforms TcbTree in classification throughput and is much
superior to KickTree_Parallel in update throughput. More
importantly, it supports rule update with only little impact on
the search, which is more suitable for practical application
scenarios. Although [22] is claimed to be able to support on-
the-fly rule update, the details about leaf node deletion/creation
and intermediate node update is not discussed, and the
corresponding hardware implementation is not proposed. Sim-
ilarly, [64] only presents the rule deletion/insertion approach
for the proposed algorithm, while the implementation of the
update scheme on hardware could not be found in the paper.
The work in [26] proposes the method of inserting write
bubbles to pipeline memories to enable rule update. However,
the new content of the memory is computed offline rather than
changed dynamically according to on-the-fly update orders as
our proposed method. The implementation of [65] achieves
high performance in packet classification for three types of
rules, but it does not support rule update.

In aspect of comparing with BV decomposition based FPGA
implementations, it can be noted that the throughput for IPC
rule sets outperforms other designs while the performance
for ACL and FW is also comparable to other designs. The
StrideBV [19] does not support range match or update.
Although real-time rule update is supported in [20], this design
can only perform prefix match in the source address and des-
tination address fields, and exact match in all the other fields,
and [74] have range search capabilities and support dynamic
rule update. It is noticeable that none of the BV decomposition
based FPGA approaches could support large-scale rule sets.

Our implementation is also compared with TCAM-based
packet classification methods [76], [77], which simulate
TCAM by SRAM and are implemented on FPGA, in Table V.
They both support TCAM word update and range matching,
but the dynamic update performance is not provided in the
literature. Note that only about 10k-scale entries of words can

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

1720

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

TABLE V
COMPARISON WITH DECISION TREE BASED, DECOMPOSITION-BASED, AND TCAM-BASED APPROACHES ON FPGA
. Classification Update
Approaches lt(ule Rl{l.e set Device Bange{ Dyn;lr?lc throughput throughput
ype size suppor update (MPPS) (MUPS)
1PC 919.19 7.1
Proposed KickTree_Systolic ACL 10k Ultrascale+ VU9P v v 531.3 8.1
FW 623.2 9.2
1PC 394.2 11.6
TcbTree [67] ACL 10k Ultrascale+ VU9P v v 310.07 9.4
FW 508.5 11.4
IPC 394.9 3.52
KickTree_Parallel [73] ACL 10k Ultrascale+ VU9P v v 545.8 3.27
Decision tree Fw 209.4 3.78
based . L . 514.2
MitTree on FPGA [65] ACL 10k Virtex-7 XC7V690T v X 496 \
FW 524.4
ACL 10k Virtex-5 XC5VEFX200T 3235
REC [64] ACL 10k Virtex-6 XC6VLX760 v x 388.2 \
Modified Hypercuts [63] ACL 10k Stratix III EP3SE260H780 v X 433
D?BS [27] ACL 10k Virtex-5 XC5VSX240T v X 263.7 \
Hypercuts on FPGA [26] ACL 10k Virtex-5 XC5VEFX200T v v 250.7 \
CubeCuts [62] ACL 10k Virtex-5 XC5VFX200T v X 368.8
Hypersplit on FPGA [22] ACL 10k Virtex-6 XC6VLX760 v X 230.5
Updatable Classifierl [20] S5-tuple 1k Virtex-6 XC6VLX760 X v “690 1
Decomposition Many-field classifier [63] 15-tuple 1k Virtex-7 XC7VX1140t v X ~500 \
base& Range-enhanced [28] 12-tuple 3k Virtex-6 XC6VLX760 v X 566
Updatable Classifier2 [74] S5-tuple 1k Virtex-6 XC6VLX760 v Ve ~690 1
StrideBV [75] S-tuple 0.5k Virtex-6 XC6VLX760 X X ~390
TCAM based TCAM on FPGA [76] / 16k Virtex-7 XC7V2000T v v 153 \
Pseudo-TCAM [77] / 10k UltraScale XCVUO080 v v 426

be accommodated while almost exhausting all on-chip mem-
ory and logic slices, which is similar to BV decomposition
based designs.

VI. CONCLUSION

We propose an algorithm/hardware co-design multi-tree
scheme specially designed for parallel packet classification on
FPGA in this paper. First, an algorithm that constructs multiple
shallow trees for the rule set with a recursive rule sifting pro-
cess is designed, which can leverage the intrinsic parallelism
of FPGA. Different from traditional space-cutting based multi-
tree construction, our rule sifting mechanism breaks the space
constraints of rule-to-tree mapping and enables bounded height
on each tree, which can thus provide the potential of bounded
worst-case and line-speed performance. Then, we design a
flexible hardware architecture with multiple systolic arrays that
can be implemented in parallel on FPGA. This architecture
gets rid of the need of parallel parsing for multiple trees
and can be agilely adapted to various rule sets. Each systolic
array works as a coarse-grained pipeline, and the constructed
multiple trees will be mapped onto these pipeline stages.
This hardware-software mapping enables bounded worst-case
rule searching. Additionally, incremental rule update can be
achieved simply by traversing the pipeline in one pass, with
little and bounded impact on rule searching. Extensive FPGA
experimental results show that, our proposed scheme can
achieve high performance on both search and update for
large-scale rule sets.

REFERENCES

[11 Y. Xin, Y. Liu, W. Li, R. Yao, Y. Xu, and Y. Wang, “Kick-
Tree: A recursive algorithmic scheme for packet classification with
bounded worst-case performance,” in Proc. Symp. Archit. Netw. Com-
mun. Syst., Dec. 2021, pp. 23-30.

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

D. Firestone et al., “Azure accelerated networking: SmartNICs in the
public cloud,” in Proc. USENIX NSDI, 2018, pp. 51-66.

D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Comput. Surv., vol. 37, no. 3, pp. 238-275, Sep. 2005.

H. J. Chao and B. Liu, High Performance Switches and Routers.
Hoboken, NJ, USA: Wiley, 2007.

G. Varghese and J. Xu, Network Algorithmics: An Interdisciplinary
Approach to Designing Fast Networked Devices. San Mateo, CA, USA:
Morgan Kaufmann, 2022.

A. Rashelbach, O. Rottenstreich, and M. Silberstein, “Scaling open
vSwitch with a computational cache,” in Proc. USENIX NSDI, 2022,
pp. 1359-1374.

N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” in Proc. ACM SIGCOMM, 2008, pp. 69-74.

K. Zheng, H. Che, Z. Wang, B. Liu, and X. Zhang, “DPPC-RE: TCAM-
based distributed parallel packet classification with range encoding,”
IEEE Trans. Comput., vol. 55, no. 8, pp. 947-961, Aug. 2006.

K. Zhen, C. Hu, H. Lu, and B. Liu, “A TCAM-based distributed parallel
IP lookup scheme and performance analysis,” IEEE/ACM Trans. Netw.,
vol. 14, no. 4, pp. 863-875, Aug. 2006.

C. R. Meiners, A. X. Liu, and E. Torng, Hardware Based Packet
Classification for High Speed Internet Routers. New York, NY, USA:
Springer, 2010.

O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy, “Exact worst
case TCAM rule expansion,” IEEE Trans. Comput., vol. 62, no. 6,
pp. 1127-1140, Jun. 2013.

O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Porat,
“Optimal in/out TCAM encodings of ranges,” IEEE/ACM Trans. Netw.,
vol. 24, no. 1, pp. 555-568, Feb. 2016.

K. Kogan, S. I. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eugster,
“Exploiting order independence for scalable and expressive packet
classification,” IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 1251-1264,
Apr. 2016.

W. Li et al., “A power-saving pre-classifier for TCAM-based IP lookup,”
Comput. Netw., vol. 164, Dec. 2019, Art. no. 106898.

Y. Wan, H. Song, Y. Xu, C. Zhang, Y. Wang, and B. Liu, “Adaptive
batch update in TCAM: How collective optimization beats individual
ones,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), May 2021,
pp. 1-10.

R. Yao et al., “MagicTCAM: A multiple-TCAM scheme for fast
TCAM update,” in Proc. IEEE 29th Int. Conf. Netw. Protocols (ICNP),
Nov. 2021, pp. 1-11.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

XIN et al.: RECURSIVE MULTI-TREE CONSTRUCTION WITH EFFICIENT RULE SIFTING

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

Y. Sadeh, O. Rottenstreich, and H. Kaplan, “Optimal weighted load
balancing in TCAMs,” IEEE/ACM Trans. Netw., vol. 30, no. 3,
pp- 985-998, Jun. 2022.

W. Jiang and V. K. Prasanna, “Field-split parallel architecture for
high performance multi-match packet classification using FPGAs,” in
Proc. 21st Annu. Symp. Parallelism Algorithms Archit., Aug. 2009,
pp. 188-196.

T. Ganegedara, W. Jiang, and V. K. Prasanna, “A scalable and
modular architecture for high-performance packet -classification,”
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 5, pp. 1135-1144,
May 2014.

Y. R. Qu and V. K. Prasanna, “High-performance and dynamically
updatable packet classification engine on FPGA,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 1, pp. 197-209, Jan. 2016.

C. Li, T. Li, J. Li, Z. Shi, and B. Wang, “Enabling packet classification
with low update latency for SDN switch on FPGA,” Sustainability,
vol. 12, no. 8, p. 3068, Apr. 2020.

Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li, and V. Prasanna, “Multi-
dimensional packet classification on FPGA: 100 Gbps and beyond,” in
Proc. Int. Conf. Field-Program. Technol., Dec. 2010, pp. 241-248.

W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet classifica-
tion on FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays, Feb. 2009, pp. 219-228.

Y.-K. Chang, Y.-C. Lin, and C.-C. Su, “Dynamic multiway segment
tree for IP lookups and the fast pipelined search engine,” IEEE Trans.
Comput., vol. 59, no. 4, pp. 492-506, Apr. 2010.

W. Jiang and V. K. Prasanna, “A FPGA-based parallel architecture for
scalable high-speed packet classification,” in Proc. 20th IEEE Int. Conf.
Appl.-Specific Syst., Archit. Processors, Jul. 2009, pp. 24-31.

W. Jiang and V. K. Prasanna, “Scalable packet classification on FPGA,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 9,
pp. 1668-1680, Sep. 2012.

B. Yang, J. Fong, W. Jiang, Y. Xue, and J. Li, “Practical multituple
packet classification using dynamic discrete bit selection,” IEEE Trans.
Comput., vol. 63, no. 2, pp. 424-434, Feb. 2014.

Y.-K. Chang and C.-S. Hsueh, “Range-enhanced packet classification
design on FPGA,” IEEE Trans. Emerg. Topics Comput., vol. 4, no. 2,
pp. 214-224, Apr. 2016.

P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in Proc. IEEE Hot Interconnects, Aug. 1999,
pp. 34-41.

T. Y. Woo, “A modular approach to packet classification: Algorithms
and results,” in Proc. IEEE INFOCOM, Mar. 2000, pp. 1213-1222.

S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” in Proc. Conf. Appl., Technol., Archit.,
Protocols Comput. Commun., Aug. 2003, pp. 213-224.

Y.-K. Chang, “Efficient multidimensional packet classification with fast
updates,” IEEE Trans. Comput., vol. 58, no. 4, pp. 463—479, Apr. 2009.
Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification algo-
rithms: From theory to practice,” in Proc. IEEE INFOCOM, Apr. 2009,
pp. 648-656.

B. Vamanan, G. Voskuilen, and T. N. Vijaykumar, “EffiCuts: Optimiz-
ing packet classification for memory and throughput,” in Proc. ACM
SIGCOMM Conf., Aug. 2010, pp. 207-218.

W. Li and X. Li, “HybridCuts: A scheme combining decomposition
and cutting for packet classification,” in Proc. IEEE 21st Annu. Symp.
High-Perform. Interconnects, Aug. 2013, pp. 41-48.

Y.-C. Cheng and P.-C. Wang, “Packet classification using dynami-
cally generated decision trees,” IEEE Trans. Comput., vol. 64, no. 2,
pp. 582-586, Feb. 2015.

S. Yingchareonthawornchai, J. Daly, A. X. Liu, and E. Torng, “A sorted-
partitioning approach to fast and scalable dynamic packet classification,”
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1907-1920, Aug. 2018.
W. Li, X. Li, H. Li, and G. Xie, “CutSplit: A decision-tree combining
cutting and splitting for scalable packet classification,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Apr. 2018, pp. 2645-2653.
C.-L. Hsieh and N. Weng, “Many-field packet classification for software-
defined networking switches,” in Proc. ACM/IEEE Symp. Archit. Netw.
Commun. Syst. (ANCS), Mar. 2016, pp. 13-24.

J. Daly and E. Torng, “ByteCuts: Fast packet classification by interior
bit extraction,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2018, pp. 2654-2662.

E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural packet classification,”
in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 256-269.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]
(53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

1721

V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” in Proc. ACM SIGCOMM Conf. Appl.,
Technol., Archit., Protocols Comput. Commun., Oct. 1998, pp. 191-202.
T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” in Proc.
ACM SIGCOMM Conf. Appl., Technol., Archit., Protocols Comput.
Commun., Oct. 1998, pp. 203-214.

P. Gupta and N. McKeown, “Packet classification on multiple fields,”
in Proc. Conf. Appl., Technol., Archit., Protocols Comput. Commun.,
Aug. 1999, pp. 147-160.

F. Baboescu and G. Varghese, “Scalable packet classification,” ACM
SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 199-210, 2001.

D. E. Taylor and J. S. Turner, “Scalable packet classification using
distributed crossproducing of field labels,” in Proc. IEEE INFOCOM,
Mar. 2005, pp. 269-280.

F. Geraci, M. Pellegrini, P. Pisati, and L. Rizzo, “Packet classification via
improved space decomposition techniques,” in Proc. IEEE INFOCOM,
Mar. 2005, pp. 304-312.

Y. Xu, Z. Liu, Z. Zhang, and H. J. Chao, “High-throughput and
memory-efficient multimatch packet classification based on distributed
and pipelined hash tables,” IEEE/ACM Trans. Netw., vol. 22, no. 3,
pp. 982-995, Jun. 2014.

W. Li, D. Li, Y. Bai, W. Le, and H. Li, “Memory-efficient recursive
scheme for multi-field packet classification,” IET Commun., vol. 13,
no. 9, pp. 1319-1325, Jun. 2019.

V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” in Proc. ACM SIGCOMM, 1999, pp. 135-146.

H. Song, J. Turner, and S. Dharmapurikar, “Packet classification using
coarse-grained tuple spaces,” in Proc. ACM/IEEE Symp. Archit. Netw.
Commun. Syst., Dec. 2006, pp. 41-50.

H. Lim and S. Y. Kim, “Tuple pruning using Bloom filters for packet
classification,” IEEE Micro, vol. 30, no. 3, pp. 48-59, May 2010.

B. Pfaff et al., “The design and implementation of open vSwitch,” in
Proc. USENIX NSDI, 2015, pp. 117-130.

T. Shen et al., “RVH: Range-vector hash for fast online packet classifi-
cation,” Techical Rep. ICT, 2018.

J. Daly et al., “TupleMerge: Fast software packet processing for
online packet classification,” IEEE/ACM Trans. Netw., vol. 27, no. 4,
pp. 1417-1431, Aug. 2019.

A. Rashelbach, O. Rottenstreich, and M. Silberstein, “A computational
approach to packet classification,” IEEE/ACM Trans. Netw., vol. 30,
no. 3, pp. 1073-1087, Jun. 2022.

W. Li et al.,, “Tuple space assisted packet classification with high
performance on both search and update,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 7, pp. 1555-1569, Jul. 2020.

X. Zhang, G. Xie, X. Wang, P. Zhang, Y. Li, and K. Salamatian,
“Fast online packet classification with convolutional neural network,”
IEEE/ACM Trans. Netw., vol. 29, no. 6, pp. 2765-2778, Dec. 2021.

C. Zhang, G. Xie, and X. Wang, “DynamicTuple: The dynamic adap-
tive tuple for high-performance packet classification,” Comput. Netw.,
vol. 202, Jan. 2022, Art. no. 108630.

J. Zhong, Z. Wei, S. Zhao, and S. Chen, “TupleTree: A high-
performance packet classification algorithm supporting fast rule-set
updates,” IEEE/ACM Trans. Netw., vol. 31, no. 5, pp. 2027-2041,
Oct. 2023.

Y. Liu et al., “HybridTSS: A recursive scheme combining coarse- and
fine-grained tuples for packet classification,” in Proc. ACM APNet, 2022,
pp. 1-7.

Y.-K. Chang and Y.-H. Wang, “CubeCuts: A novel cutting scheme for
packet classification,” in Proc. 26th Int. Conf. Adv. Inf. Netw. Appl.
Workshops, Mar. 2012, pp. 274-279.

A. Kennedy and X. Wang, “Ultra-high throughput low-power packet
classification,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22,
no. 2, pp. 286-299, Feb. 2014.

Y.-K. Chang, H.-C. Chen, and G. Parr, “Fast packet classification using
recursive endpoint-cutting and bucket compression on FPGA,” Comput.
J., vol. 62, no. 2, pp. 198-214, Feb. 2019.

J. Tan, G. Lv, Y. Ma, and G. Qiao, “High-performance pipeline archi-
tecture for packet classification accelerator in DPU,” in Proc. Int. Conf.
Field-Program. Technol. (ICFPT), Dec. 2021, pp. 1-4.

J. Tan, G. Lv, and G. Qiao, “MBitTree: A fast and scalable packet
classification for software switches,” in Proc. IEEE Symp. High-Perform.
Interconnects (HOTI), Aug. 2021, pp. 60-67.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

1722

[67] Y. Xin, W. Li, G. Tang, T. Yang, X. Hu, and Y. Wang, “FPGA-based

updatable packet classification using TSS-combined bit-selecting tree,”

IEEE/ACM Trans. Netw., vol. 30, no. 6, pp. 2760-2775, Dec. 2022.

Y. Xin, W. Li, G. Xie, Y. Xu, and Y. Wang, “Updatable packet classifi-

cation on FPGA with bounded worst-case performance,” in Proc. [EEE

Symp. High-Perform. Interconnects (HOTI), Aug. 2022, pp. 21-28.

Z. Shi, H. Yang, J. Li, C. Li, T. Li, and B. Wang, “MsBV: A memory

compression scheme for bit-vector-based classification lookup tables,”

IEEE Access, vol. 8, pp. 38673-38681, 2020.

Y.-K. Chang, “A 2-level TCAM architecture for ranges,” IEEE Trans.

Comput., vol. 55, no. 12, pp. 1614-1629, Dec. 2006.

D. E. Taylor and J. S. Turner, “ClassBench: A packet classification

benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499-511,

Jun. 2007.

[72] J. Matousek, A. Lucansky, D. Janecek, J. Sabo, J. Kofenek, and

G. Antichi, “ClassBench-ng: Benchmarking packet classification algo-

rithms in the OpenFlow era,” IEEE/ACM Trans. Netw., vol. 30, no. 5,

pp. 1912-1925, Oct. 2022.

Y. Xin, W. Li, G. Xie, Y. Xu, and Y. Wang, “A parallel and updatable

architecture for FPGA-based packet classification with large-scale rule

sets,” IEEE Micro, vol. 43, no. 2, pp. 110-119, Mar. 2023.

Y. R. Qu, S. Zhou, and V. K. Prasanna, “High-performance architecture

for dynamically updatable packet classification on FPGA,” in Proc.

Archit. Netw. Commun. Syst., Oct. 2013, pp. 125-136.

T. Ganegedara and V. K. Prasanna, “StrideBV: Single chip 400G+

packet classification,” in Proc. IEEE 13th Int. Conf. High Perform.

Switching Routing, Jun. 2012, pp. 1-6.

[76] W. Jiang, “Scalable ternary content addressable memory implementation
using FPGAs,” in Proc. Archit. Netw. Commun. Syst., Oct. 2013,
pp. 71-82.

[77] W. Yu, S. Sivakumar, and D. Pao, ‘“Pseudo-TCAM: SRAM-based
architecture for packet classification in one memory access,” I[EEE Netw.
Lett., vol. 1, no. 2, pp. 89-92, Jun. 2019.

[68]

[69]

[70]

[71]

(73]

[74]1

[751

Yao Xin received the Ph.D. degree from the Depart-
ment of Electronic Engineering, City University
of Hong Kong, Hong Kong, in 2015. He was a
Visiting Research Scholar with the University of
Southern California, USA, in 2014. He is cur-
rently an Associate Professor with the Cyberspace
Institute of Advanced Technology, Guangzhou Uni-
versity, Guangdong, China. His current research
interests include network intelligent hardware accel-
eration, VLSI design for deep learning, and network
algorithms.

Wenjun Li received the Ph.D. degree from Peking
University in 2020. From 2020 to 2023, he was
a Post-Doctoral Fellow with the Peng Cheng Lab-
oratory and Harvard University, co-advised by
Academician Yunjie Liu and Prof. Minlan Yu.
From 2014 to 2015, he was a Research Engineer
with Huawei Technologies Company Ltd. He is
currently an Associate Researcher with the Network
Research Department, Peng Cheng Laboratory. His
current research interests include programmable net-
work data planes, network telemetry, and network
algorithms.

Chengjun Jia received the B.Eng. degree from
Tsinghua University, Beijing, China, in 2018.
He is currently pursuing the Ph.D. degree with
the Network Security Laboratory, Department of
Automation, Tsinghua University, China, under the
supervision of Prof. Jun Li. He has published some
articles on packet classification, congestion con-
trol, and network verification. His current research
interests include parallel computer architecture, data
center networks, and hardware acceleration.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Xianfeng Li (Member, IEEE) received the B.S.
degree from the School of Computer and Con-
trol Engineering, Beijing Institute of Technology,
in 1995, and the Ph.D. degree in computer science
from the National University of Singapore in 2005.
He is currently an Associate Professor with the
Macau University of Science and Technology. Prior
to that, he was an Associate Professor with the
Peking University Shenzhen Graduate School. His
current research interests include SDN, co-design of
hardware and software, and the Internet of Things.

Yang Xu (Member, IEEE) received the B.Sc. degree
from the Beijing University of Posts and Telecom-
munications in 2001 and the Ph.D. degree from
Tsinghua University in 2007. He is currently the
Yaoshihua Chair Professor with the School of Com-
puter Science, Fudan University. Prior to joining
Fudan University, he was a Faculty Member with
the New York University Tandon School of Engi-
neering. He has published more than 120 articles
and holds more than ten U.S. and internationally
granted patents on various aspects of networking and
computing. His current research interests include SDN, DCN, NFV, and edge
computing. He served as a TPC member for many international conferences,
an Editor for Journal of Network and Computer Applications, and a Guest
Editor for IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
Special Series on Network Softwarization and Enablers.

Bin Liu (Senior Member, IEEE) received the M.S.
and Ph.D. degrees in computer science and engi-
neering from Northwestern Polytechnical University,
Xi’an, China, in 1988 and 1993, respectively. He is
currently a Full Professor with the Department of
Computer Science and Technology, Tsinghua Uni-
versity, Beijing, China. His current research interests
include high-performance switches/routers, network
processors, and greening the internet. He has
received numerous awards from China, including the
Distinguished Young Scholar of China and won the
Inaugural Applied Network Research Prize sponsored by ISOC and IRTF
in 2011.

Zhihong Tian (Senior Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer
science and technology from the Harbin Insti-
tute of Technology, Harbin, China, in 2001, 2003,
and 2006, respectively. He is currently a Profes-
sor and the Dean with the Cyberspace Institute
of Advanced Technology, Guangzhou University,
Guangdong, China. He is honored as a Pearl River
Scholar in Guangdong Province. He is also a
part-time Professor with Carlton University, Ottawa,
Canada. Previously, he served in different academic
and administrative positions with the Harbin Institute of Technology. He has
authored over 200 journals and conference papers. His research has been
supported in part by the National Natural Science Foundation of China, the
National Key Research and Development Plan of China, and the National
Hightech Research and Development Program of China (863 Program).
He also served as a member, the chair, and the general chair of several
international conferences. He is a Distinguished Member of the China
Computer Federation.

Weizhe Zhang (Senior Member, IEEE) received the
Ph.D. degree in computer science from the Harbin
Institute of Technology, Harbin, China, in 2006.
He is currently a Professor with the School of
Computer Science and Technology, Harbin Institute
of Technology, Shenzhen, China, and the Director of
the Department of New Networks, Peng Cheng Lab-
oratory, Shenzhen. He has authored or coauthored
more than 130 academic papers in journals, books,
and conference proceedings. His current research
interests include cyberspace security, cloud comput-
ing, and high-performance computing. He is a senior member of ACM.

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on April 22,2024 at 08:11:22 UTC from IEEE Xplore. Restrictions apply.

