
1

An FPGA-based High-Throughput Packet Classification Architecture
Supporting Dynamic Updates for Large-Scale Rule Sets

Yao Xin1, Wenjun Li1,2,∗ , Yi Wang1,3, and Song Yao4

1Peng Cheng Laboratory, 2Peking University, 3Southern University of Science and Technology, 4New H3C, China
xiny@pcl.ac.cn, wenjunli@pku.edu.cn (∗corresponding author), wangy37@sustech.edu.cn, yaosong@h3c.com

Abstract—A high-performance packet classification architec-
ture based on FPGA supporting large-scale rule sets up to 100k
is proposed in this poster. It supports fast dynamic rule update
and tree reconstruction. The update throughput is comparable to
that of classification. An efficient data structure set for decision
tree is constructed to convert tree traversal to addressing process.
Different levels of parallelism are fully explored with multi-core,
multi-search-engine and coarse-grained pipeline. It achieves a
peak throughput of more than 1000 MPPS for 10k and 1k rule
set for both classification and update.

I. INTRODUCTION

As one of the building blocks of Software-Defined Network
(SDN), OpenFlow is widely used to provide dynamic traffic
steering between applications on different platforms. An Open-
Flow switch consists of one or more flow tables to perform
packet lookups and forwarding which is essentially a multi-
field packet classification problem [1]. In the last two decades,
FPGA has been increasingly adopted as a favorable platform
for packet classification to replace TCAM-based methods [2],
[3]. Although intensive research has been conducted in this
field, there is still no single hardware architecture that can meet
the demands for packet classification in OpenFlow switches:
1) multi-field (not limited to typical 5 tuples) matching; 2)
large-scale rule set supporting; 3) fast dynamic rule update.
Nowadays, FPGA-based decision tree implementations still
face great difficulty in rule update due to the notorious
rule replications [2]. Furthermore, the features of unbalance
and unbounded depth in decision trees cause fully pipelined
designs result in a high dependence on rule set and a resource
waste. As the cutting-edge FPGA-based packet classification
technique, the recently proposed Bit Vector (BV) approach
could achieve a good performance in both classification and
update [3]. However, the scale of Vector is restricted by FPGA
resources, thus only small-scale rule sets can be applied.

To address the above problems, we present a dynamically
updatable hardware architecture for multi-field packet classifi-
cation based on the improved version of our proposed Tabtree
algorithm [4]. Not only does it achieve a high performance in
classification and update, it also supports large-scale rule sets
up to 100k. The maximal average throughput for classification
and update is up to 1132 MPPS and 1036 MUPS respectively
for 5-tuple 1k rule sets, on a state-of-the-art FPGA. The major
contributions of this work are as follows:

• Suitable data structures for nodes and rules are designed
which are stored in large pieces of RAMs instead of
distributed small ones. This facilitates the support for
large-scale rules and breaks the constraints of limited

This work is partially supported by project “PCL Future Greater-Bay Area
Network Facilities for Large-scale Experiments and Applications (LZC0019)”.

tree depth and imbalanced node distribution. Thus, the
architecture is independent of rules. Moreover, the tree
reconstruction is equivalent to the update of RAM data
which can be easily realized.

• Fast dynamic rule update is fully supported for large-scale
rule sets. It is able to create and delete tree node in real-
time with the help of storage space dynamic allocation.

• Multiple parallel techniques are fully explored such
as multi-core, multi-search engine, and coarse-grained
pipeline to achieve a high performance.

II. ARCHITECTURE DESIGN

In spite of extensive research on decision-tree algo-
rithms [5], [6], the unbalanced nodes hinder designing fully
pipelined architectures on FPGA. Furthermore, only a limited
number of tree levels is supported due to the explosive growth
of high-level nodes. To address the above issues, two chain-
table-like data structures are constructed for nodes and rules
which are shown in Fig. 1. Nodes are divided into internal
nodes and leaves, each one associated with a table of 134 bits
(selection bit length in Tabtree is 2). Each leaf is associated
with one rule subset with a number threshold of binth. Each
rule corresponds to a 273-bit table (5-tuple, mask is transfered
to ranges) which connects end to end within one subset.

These two types of tables are stored in two bulks of on-chip
RAMs: node table RAM and rule table RAM. Therefore, the
tree traversal to search a rule is converted to the addressing
process. This design has three major advantages:

• The architecture does not depend on specific rule sets.
• The level of nodes could not be restricted.
• It facilitates real-time rule update, as rules could be traced

back to upper-level nodes with cached node information.
The proposed FPGA architecture is shown in Fig. 2. The

outermost architecture utilizes data parallelism by instantiating
multiple cores for independent computing in parallel. Taking
typical 5-tuple rule set as an example, each computing core
consists of three tree structures based on the small rule fields
according to Tabtree [4]: source IP address (SA), destination
IP address (DA), SA & DA. The architecture for each tree
structure is composed of Node Search module and Rule
Operate module. The former one finds the rule subset address
while the later one searches rules linearly and makes actions
of search, delete, or insert according to the operation code.
These two modules run independently and constitute a two-
stage coarse-grained pipeline. In Node Search module and
Rule Search submodule, multiple engines are implemented
to speed up the search process and improve memory access
efficiency. A fully pipelined design is not adopted because
the storage resources are too scattered which would cause

IEEE INFOCOM 2021 Poster

978-1-6654-0443-3/21/$31.00 ©2021 IEEE

IE
EE

 IN
FO

C
O

M
 2

02
1

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 W
or

ks
ho

ps
 (I

N
FO

C
O

M
 W

K
SH

PS
) |

 9
78

-1
-6

65
4-

04
43

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IN

FO
C

O
M

W
K

SH
PS

51
82

5.
20

21
.9

48
44

40

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 11:22:39 UTC from IEEE Xplore. Restrictions apply.

2

Rule set

Root

Node Node Node

Leaf Node Leaf Leaf

Leaf Leaf

child[1]

addr

child[0]

addr

child[3]

addr
nrules

16bit8bit

depth sbit[1]sbit[0]

16bit4bit

root

Tree node table RAM

leaf

1bit

1st rule

addr

32bit

Rule table RAM

range[4]

high

range[4]

low

range[3]

high

range[3]

low

range[2]

high

Next

valid

Next

addr

range[2]

low

range[1]

high

range[1]

low

range[0]

high

range[0]

low
id

child[2]

addr

node

valid

1bit 8bit 16bit16bit16bit

8bit32bit1bit 32bit 8bit 16bit 16bit 16bit 16bit 32bit 32bit 32bit 32bit

src IP addrdest IP addrdest port src portprotocol

Node

Fig. 1. The data structure design for nodes and rules.

Tabtree core

Node Search

Search engine

Search engine

Search engine

Packet in

/ Rule in

Found
rule
addr

Rule Operate

Update interface

Rule search

Search engine

Search engine

Search engine

Rule

delete

Rule

insert

Found

rule

Final result
Packet in / Rule in

FPGA

Computing core

Computing core

Computing core

Computing core

Computing core

Computing core

DA tree

SA tree
Priority

compare

Result collector

Result collector

SA_DA tree Result collector

Rule

table

RAM

Node

table

RAM

Empty

addr

allocator

Upper
node
info

Fig. 2. The detailed hardware architecture.

TABLE I
IMPLEMENTATION RESULT

Average Core LUTs Registers BRAM URAM Frequency
rule size num (1182240) (2364480) (2160) (960) (MHz)

100k 5 23735 33610 1030 640 235.4
32k 14 66488 94113 1344 672 222.5
10k 35 145604 211694 1260 706 200.6
1k 50 300160 539789 922 718 185.3

resources being seriously wasted, impede real-time update, and
make reconstruction impossible in such configuration.

The rules to be added or deleted are processed in the
same way as the packets in Node Search stage, but they are
processed by rule delete and insert engines separately in Rule
Operate module. The empty address allocation logic helps
dynamically manage the available space in node table RAM
and rule table RAM for rule update. With cached complete
information from the Node Search module, upper-level nodes
can be traced back to support real-time update of internal
nodes, deletion and addition of leaf nodes.

III. EXPERIMENTAL RESULTS

Resource Utilization. The architecture adapting to rule sets
in different sizes is implemented on Xilinx Virtex UltraScale+
VU9P FPGA, in order to make a comprehensive comparison.
Table I summarizes the resource usage and maximum fre-
quency with different core numbers. It can be noted that the
memory (URAM & BRAM) is the most used FPGA resource.

Experimental Setup. Three types of rule sets are generated
by ClassBench to make the performance evaluation: ACL, FW
and IPC, each of which has four sizes: 1k, 10k, 32k, 100k.
The small-field threshold and selection bit length in Tabtree
are 12 and 2. The threshold of rule number in leaf (binth) is set
to 6. The number of search engines in Node Search and Rule
Operate module is set to 6 and 4 separately. The rules in leaves
with the number more than binth are filtered into the big rule

0
200
400
600
800

1000
1200
1400
1600
1800

packet classification (MPPS) rule update (MUPS)

Fig. 3. The throughput for packet classification and rule update.

set which is not included in tree structures. Performance merits
consist of packet classification throughput and rule update
throughput in units of MPPS (Million Packets per Second)
and MUPS (Million Updates per Second) respectively.

Performance Evaluation. To our knowledge, there is cur-
rently no FPGA-based architecture that supports both classifi-
cation and update for large-scale rule sets to make a peer-to-
peer comparison. Therefor, only our performance results are
shown in Fig. 3 to be a reference for subsequent work. The
average throughput of classification for 1k, 10k, 32k, 100k rule
sets is 1132 MPPS, 804 MPPS, 405 MPPS, 136 MPPS, while
the update throughput is 1036 MUPS, 754 MUPS, 364 MUPS,
119 MUPS respectively. Therefore, this design has achieved a
high performance in both packet classification and rule update.

IV. FUTURE WORK

In order to ensure the stable performance for large-scale rule
sets, rules in a leaf with the number greater than the threshold
value are filtered into the set of big rules (i.e. the rules with
large field range). And PSTSS adopted in original TabTree
is not utilized for leaf rules. The process of big rules is not
addressed hereof as they only account for a small percentage
of the entire rule set. Our future work is to design efficient
architectures to process big rules.

REFERENCES

[1] A. Rashelbach, O. Rottenstreich, and M. Silberstein, “A computational
approach to packet classification,” in ACM SIGCOMM, 2020.

[2] W. Jiang and V. K. Prasanna, “Scalable packet classification on fpga,”
IEEE TVLSI, 2012.

[3] Y. R. Qu and V. K. Prasanna, “High-performance and dynamically
updatable packet classification engine on fpga,” IEEE TPDS, 2016.

[4] W. Li, T. Yang, Y. Chang, T. Li, and H. Li, “Tabtree: A tss-assisted
bit-selecting tree scheme for packet classification with balanced rule
mapping,” in ACM/IEEE ANCS, 2019.

[5] W. Li, T. Yang, O. Rottenstreich, X. Li, G. Xie, H. Li, B. Vamanan,
D. Li, and H. Lin, “Tuple space assisted packet classification with high
performance on both search and update,” IEEE JSAC, 2020.

[6] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar, “Efficuts: Optimizing
packet classification for memory and throughput,” in ACM SIGCOMM,
2010.

IEEE INFOCOM 2021 Poster

Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on October 17,2024 at 11:22:39 UTC from IEEE Xplore. Restrictions apply.

		2022-08-25T00:23:38-0400
	Preflight Ticket Signature

