
A fast flow table engine for Open vSwitch with high
performance on both lookups and updates

Hui Li, Ting Huang
PKUSZ&Peng Cheng Laboratory
{lih64,huangting53}@pku.edu.cn

Tong Yang, Wenjun Li∗
EECS/SECE, Peking University

{yang.tong,wenjunli}@pku.edu.cn

Gong Zhang
2012 Labs, Huawei

nicholas.zhang@huawei.com

ABSTRACT
To support fast rule updates in SDN, the Open vSwitch uses a vari-
ant of Tuple Space Search (TSS) for flow table lookups, which is less
efficient than decision trees on packet classifications. In this poster,
we present our latest work on building fast flow table engine in
Open vSwitch, which achieves high-speed table lookups and fast
rule updates simultaneously. By mapping rules into tree nodes dy-
namically, a very limited TSS-assisted balanced trees can be gen-
erated without the trouble of rule replications. Preliminary exper-
imental results show that using ClassBench, our work has compa-
rable update performance to the TSS algorithm in Open vSwitch,
while achieving almost an order-of-magnitude improvement on
lookup performance over TSS on average.

CCS CONCEPTS
• Networks→ Packet classification.

KEYWORDS
SDN, Open vSwitch, OpenFlow, Packet classification
ACM Reference Format:
Hui Li, Ting Huang, Tong Yang, Wenjun Li, and Gong Zhang. 2019. A fast
flow table engine for Open vSwitchwith high performance on both lookups
and updates. In SIGCOMM ’19: ACM SIGCOMM 2019 Conference (SIGCOMM
Posters and Demos ’19), August 19–23, 2019, Beijing, China. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3342280.3342331

1 INTRODUCTION
OpenFlow virtual switches are being widely deployed in SDN/NFV
to enable a wide spectrum of non-traditional applications, such as
flexible resource partitioning and real-time migration. The Open-
Flow switch enforces forwarding policies with multiple ‘match-
action’ table lookups, which is essentially an extensively studied
∗Wenjun Li (Corresponding author) and Hui Li are also with the Future Network
PKU Lab of National Major Research Infrastructure. This work is supported by
the National Keystone R&D Program of China (2018YFB1004403, 2017YFB0803204,
2016YFB1000304), PCL Future Regional Network Facilities for Large-scale Exper-
iments and Applications (PCL2018KP001), NSFC (61672061, 61671001), Shenzhen
Municipal Development and Reform Commission (Disciplinary Development Pro-
gram for Data Science and Intelligent Computing) and Shenzhen Research Program
(JCYJ20170306092030521). This work is conducted under the guidance of Tong Yang.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6886-5/19/08…$15.00
https://doi.org/10.1145/3342280.3342331

multi-field packet classification problem [4]. But unlike traditional
algorithmic packet classification which focused on high-speed ta-
ble lookups, OpenFlow has a much higher demand on rule updates,
making most of existing algorithms inapplicable in this context [7].

Among packet classification techniques, decision tree has been
actively investigated because of its capability for high-speed ta-
ble lookups [1–3, 8]. However, decision tree based schemes can-
not support fast rule updates due to the notorious rule replication
problem. In contrast, TSS based schemes partition rules into a set
of hash tables without any rule replications, thereby enabling fast
rule updates, which is an important metric for SDN switches. As
a result, the popular Open vSwitch implements a variant of TSS
called Priority Sorting Tuple Space Search (PSTSS) for its flow ta-
ble lookups [5]. However, TSS based schemes have a performance
concern for large rule set due to the tuple expansion problem.

In this poster, we present our latest progress on algorithmic
packet classifications especially in decision trees, which achieves
high performance on both table lookups and rule updates. Intu-
itively, to achieve this goal, there are two major challenges must
be carefully addressed when building decision trees. First, in order
to improve classification performance, how to build short trees to
reduce memory access for each lookup; second, in order to support
fast rule updates, how to avoid rule replication in decision trees.

To address these challenges, we propose a two-stage heteroge-
neous framework, which can generate a very limited short decision
trees without any rule replications. In the first stage, several bal-
anced mapping trees are constructed from rule subsets grouped
with respect to their small fields. This grouping eliminates wild-
card (*) at super-bits of small fields, thereby enabling very efficient
mapping without any rule replications. The second stage handles
the terminated nodes from pre-mappings, where wildcards may
lead to rule replications. A salient fact is that after pre-mappings,
the number of rules in the terminal nodes has been significantly
reduced, where the linear search or TSS approaches can be well
applied for these subsets to facilitate tree constructions.

Overall, the goal of our project is to design a fast flow table en-
gine for packet processing in Open vSwitch, which can adaptively
exploit the benefits of tree and TSS techniques.

2 DESIGN & AWORKING EXAMPLE
Before describing the key steps of our algorithm design, we first
give the definition of an important concept: small field.

2.1 Definition: Given an N -field rule R=(F1, …, Fi , … FN) and a
threshold value vector T=(T1, …, Ti , … TN), we give a definition for
field Fi as follows: if the range span length of field Fi ≤ threshold
value Ti , we say that Fi is a small field.

2.2 Key Steps: Based on the definition of small field, we now
list the key steps of our designed algorithm as follows.

https://doi.org/10.1145/3342280.3342331
https://doi.org/10.1145/3342280.3342331

SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China Hui Li, Ting Huang, Tong Yang, Wenjun Li, and Gong Zhang

Table 1: Example rule set with two IPv4 address fields
rule # src_addr dst_addr rule # src_addr dst_addr
R1 228.128.0.0/9 0.0.0.0/0 R8 0.0.0.0/0 123.0.0.0/8
R2 223.0.0.0/9 0.0.0.0/0 R9 178.0.0.0/7 0.0.0.0/1
R3 0.0.0.0/1 175.0.0.0/8 R10 0.0.0.0/1 172.0.0.0/7
R4 0.0.0.0/1 225.0.0.0/8 R11 0.0.0.0/1 226.0.0.0/7
R5 0.0.0.0/2 225.0.0.0/8 R12 128.0.0.0/1 120.0.0.0/7
R6 128.0.0.0/1 123.0.0.0/8 R13 128.0.0.0/2 120.0.0.0/7
R7 128.0.0.0/1 37.0.0.0/8 R14 128.0.0.0/1 38.0.0.0/7

Table 2: Partitioned rules based on small dst_addr field
rule src_addr (Tsrc_addr = 225) dst_addr (Tdst_addr = 225)
1-32th bits 33-39th bits 40-64th bits
R3 0******************************* 1010111 1************************
R4 0******************************* 1110000 1************************
R5 00****************************** 1110000 1************************
R6 1******************************* 0111101 1************************
R7 1******************************* 0010010 1************************
R8 ******************************** 0111101 1************************
R10 0******************************* 1010110 *************************
R11 0******************************* 1110001 *************************
R12 1******************************* 0111100 *************************
R13 10****************************** 0111100 *************************
R14 1******************************* 0010011 *************************

Figure 1: TSS-assisted decision tree for rules in Table 2.

–Step 1: Rule Partitioning. Based on the observations revealed in
previous literatures [2, 3] that, even under very demanding thresh-
olds, most rules still have at least one small field. Thus, similar to
HybridCuts [2], we can partition the vast majority of the rules into
at most N subsets without duplicates among each other, where
rules in each subset share a common characteristic in the same
single field: small field. Besides, since the number of rules without
any small fields is negligible, we can simply apply PSTSS for these
rules.

–Step 2: Balanced Tree Mappings. For each partitioned rule sub-
set, we then build a multi-way tree from selective bits recursively,
so that rules can be mapped into smaller subsets containing a very
limited rules. Obviously, for the small field with the type of pre-
fix/exact values, there is no wildcard at its corresponding super-
bits of the rules. To exploit this favorable property, we employ a
greedy bit selection algorithm on rule bits especially in these super-
bits, to build a balanced mapping tree without any rule replica-
tions.

–Step 3: TSS-assisted Decision Trees. There are three conditions
to stop the first stagemapping progress and resort to other more ef-
fectivemethods for the following tree constructions: 1) the number
of rules in the mapped tree node is less than a predefined bucket
size; 2) the remaining unselected rule bits share same values and
cannot separate rules from each other; 3) the further bit mapping
will led to rule replications due to the wildcards. Finally, for rules
in these terminatedmapping nodes (i.e., leaf nodes), we employ the
linear search (#rules ≤ bucket size) or the PSTSS (#rules > bucket
size) to facilitate tree constructions.

2.3 A Working Example: Suppose each internal tree node is
allowed to select a maximum of two bits for rule mapping and the

0.0

0.4

0.8

1.2

 average time (us)

100k100k10k 10k10k100k 1k1k1k
ACL IPCFW

0

10

20

30

40

 throughput (Mpps)

(a) Our algorithm

0

1

2

3

4

5

 average time (us)

100k100k10k 10k10k100k 1k1k1k
ACL IPCFW

0.0

1.5

3.0

4.5

 throughput (Mpps)

(b) PSTSS

Figure 2: Classification performance.

0.0

0.5

1.0

 average time (us)

100k100k10k 10k10k100k 1k1k1k
ACL IPCFW

0

2

4

6

8

 throughput (Mpps)

(a) Our algorithm

0.0

0.2

0.4

0.6

 average time (us)

100k100k10k 10k10k100k 1k1k1k
ACL IPCFW

0

1

2

3

4

5

 throughput (Mpps)

(b) PSTSS

Figure 3: Update performance.

bucket size of the leaf node is one, the threshold value vector is T =
(Tsrc_addr = 225, Tdst_addr = 225). Figure 1 shows the TSS-assisted
decision tree constructed from the rules shown in Table 2, where
these rules are partitioned based on the small dst_addr field from
the rule set shown in Table 1.

3 PRELIMINARY EVALUATION
Using ClassBench [6], we compare our algorithm with the PSTSS
algorithm [5]. The source code of PSTSS is downloaded from Par-
titionSort [8]. There are three types of rule sets: ACL, FW and IPC,
whose size varies from 1k to 100k. For each size, we generate 12
rule sets based on 12 seed files.

Figure 2 and Figure 3 show the average classification time and
update time of our algorithm and PSTSS respectively, as well as
their corresponding throughputs. Compared to PSTSS, experimen-
tal results show that our algorithm has similar update performance
as the PSTSS, but achieves an average of 8.6 times faster than PSTSS
on classification time.

4 CONCLUSION AND FUTUREWORK
Open vSwitch implements a variant of TSS instead of decision tree
based algorithmswith better performance on lookups.The primary
reason is their poor support for fast rule updates, which is an im-
portant metric for SDN switches. To achieve fast lookups and up-
dates at the same time, we introduce a TSS-assisted decision tree
framework for packet classifications. Thanks for the clever parti-
tioning and balanced mapping, a very limited short decision trees
can be generated without any rule replications. As our future work,
we will improve our scheme from the following aspects: 1) dy-
namic rule partitioning based on rule bits; 2) effective mapping
for range fields. Besides, we will also implement our schemes in
hardware platform such as FPGA.

A fast flow table engine for Open vSwitch with high performance on both lookups and updates SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China

REFERENCES
[1] Peng He, Gaogang Xie, Kavé Salamatian, and Laurent Mathy. 2014.

Meta-algorithms for software-based packet classification. In ICNP 2014.
IEEE, 308–319.

[2] Wenjun Li and Xianfeng Li. 2013. HybridCuts: A scheme combining
decomposition and cutting for packet classification. InHot Interconnects
2013. IEEE, 41–48.

[3] Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. 2018. CutSplit:
A Decision-Tree Combining Cutting and Splitting for Scalable Packet
Classification. In INFOCOM 2018. IEEE, 2645–2653.

[4] Nick McKeown and et al. 2008. OpenFlow: enabling innovation in cam-
pus networks. ACM SIGCOMM CCR 38, 2 (2008), 69–74.

[5] Ben Pfaff and et al. 2015. The design and implementation of open
vswitch. In NSDI 2015. USENIX, 117–130.

[6] David E Taylor and Jonathan S Turner. 2007. Classbench: A packet
classification benchmark. IEEE/ACM ToN 15, 3 (2007), 499–511.

[7] Tong Yang and et al. 2018. Fast OpenFlow Table Lookup with Fast
Update. In INFOCOM 2018. IEEE, 2636–2644.

[8] Sorrachai Yingchareonthawornchai, James Daly, Alex X Liu, and Eric
Torng. 2018. A Sorted-Partitioning Approach to Fast and Scalable Dy-
namic Packet Classification. IEEE/ACM ToN 26, 4 (2018), 1907–1920.

	Abstract
	1 Introduction
	2 Design & A Working Example
	3 PRELIMINARY EVALUATION
	4 Conclusion and FUTURE WORK
	References

